
On the Serialisation of Parallel Programs
P.H.Welch and G.R.R.Justo

Computing Laboratory, University of Kent at Canterbury, CT2 7NF.

Abstract. This paper argues that one of the key techniques for making the most efficient use of multi-proces-
sor architectures is theserialisationof parallel code!Parallel algorithms are presented as having strong engi-
neering merits that will form the natural basis for systems design in the future.Parallelisation of serial code
is regarded as having only short-term value (for ‘‘dusty-decks’’, whose correctness cannot be verified) as well
as being mathematically intractable.Serialisation, on the other hand, is much easier to automate and can be
profitably employed today. Sev eral serialising transforms foroccamprocesses are presented and applied to

various simulation and image compression tasks.

2 .nr H1 1 0. Introduction

This paper reviews and interprets some of thepracticeandexperienceof programming par-
allel computing systems we have obtained at the University of Kent over the past six years.
We present in a semi-formal, but disciplined, manner some of the practical skills we believe
should be regularly applied to the development of parallel programs.We are by no means
alone in our beliefs.We are alarmed, however, that they do not seem to be recognised by
the ‘‘mainstream’’ computer science community.

The chief lessons are these :−
• parallelism is a major structuring method that enables us to manage complexity (in the

design, verification and maintenance of systems);

• system design, therefore, should be (highly) parallel from the start;

• in general, there should be many more logical processes than physical processors (‘‘par-
allel slackness’’);

• to optimise performance, parallel sub-networks running on individual processing nodes
may need serialising.Tools to automate (or, at least, help in) such serialisation are
badly needed.

Expressed positively like this, these do not seem to be too contentious. It is the negative
conclusions we can draw from them, however, that seem to raise eyebrows :−
• design standards that exclude parallelism also exclude security for complex applica-

tions. Thisleads to growing losses — both financial and human life;

• efficient and robust systems cannot be built by ‘‘first getting them to work serially on
one processor’’ and then ‘‘parallelising’’ them;

• existing ‘‘dusty-deck’’ codes, that represent massive financial investments that ‘‘cannot
afford to be wasted’’, also represent massive serial codes that are becoming unmaintain-
able and are certainly unverifiable. Theseare technical dead-ends — as commercial
pressures will gradually make clear to all those who persist with them;

• tools to assist the parallelisation of large-scale serial code are very difficult to make, will
be very expensive to buy and will not be needed by the time they are half-made to work.

On Serialisation - 2 - Welch & Justo

Regardless of the reaction of your eyebrows to the above assertions, please read on!

1. Some Merits of Parallel Design

Parallelism does not extend the range of functions that can be computed.Theparallel oper-
ator inCSP[0] is completely defined in terms of itsserialchoice operator. The only motive
for its introduction is that it simplifies the expression (i.e. the ‘‘programming’’) of the be-
haviour of most processes (above a low lev el of complexity) and, hence, our ability to rea-
son about them.

The parallel construct inoccam[1] is directly based uponCSPtheory and directly reflects
the above properties. Parallelism (or, at least,occamparallelism) should be regarded as a
high-level programming structure and used freely. It may be ‘‘compiled’’ down to low-
level serial code (just asWHILE andFORloops may be implemented by unstructuredGOTOs),
but that low-level code is almost always much more complicated and harder to understand.
Nevertheless, this serialisation can always be done and sometimes there are good reasons
for doing it — see below. The reverse operation, parallelisation, requires the ‘‘de-compila-
tion’’ of l ow-level code back to high-level structures — an activity that never produces sat-
isfactory results!

We are arguing the case for parallelism on the grounds that it simplifies and clarifies the
development of complex systems — not that it makes them go faster! Historysupports this
view. Software parallelism was first experimented with in the early 1970s in an effort to
make operating systems work — or, at least, to make them work for longer periods between
crashes! Thesesystems were supporting uni-processor computers, so that the question of
exploiting concurrency to improve performancedid not arise. Indeed, a performance
penalty (due to the overheads for managing the software concurrency) was cheerfully
accepted if the overall reliability could be increased to tolerable levels.

We are very fortunate these days that parallel hardware lets us apply concurrency to
increase the performance of computer systems. In our excitement over all the MIPS and
MFLOPS that are now at our disposal, we must not forget the powerful benefits for clear
thinking that were the original motivation for going parallel.

2. Some Designs Just Have to be Parallel

The following test.rig provides a user-interface for controlling and monitoring the state
of a continuously running machine :-

test.rig

keyboard screen

[]control []monitor... ...

Its required behaviour is as follows :−
• the user supplies keystrokes to thekeyboard channel and receives display information

from thescreen channel;

On Serialisation - 3 - Welch & Justo

• responding to user keystrokes, the test.rig generatescontrol messages to the
machine under test and updates the user’s display to indicate what it has done.Erro-
neous keystrokes ‘‘bleep’’ the user’s display;

• at the same time, thetest.rig receives continuous information from itsmonitor chan-
nels about the machine state. This information flow is too great to display in its raw
form and has to be filtered and summarised before being dynamically presented to the
user in some meaningful way;

• the user may freeze the display at any moment by pressing a ‘‘pause’’ key — the next
keypress resumes normal operations.

The next figure describes a reusable design for the implementation of such atest.rig .
It shows a natural parallel construction out of four processes — each one performing its
own logically self-contained function.

generate filter

keyboard.handler screen.handler

test.rig

keyboard screen

[]control []monitor... ...

Thekeyboard.handler :−
• validates and forwards characters fromkeyboard to generate ;

• inv alid characters (pressed by the user by mistake) are not passed on — instead an
‘‘ error’’ signal is output to thescreen.handler ;

• if the ‘‘pause’’ character arrives, it outputs a ‘‘pause’’ signal to thescreen.handler ,
waits for another keystroke and sends a ‘‘resume’’ signal.

Thegenerate process :−
• receives validated characters from the keyboard;

• interprets these as instructions to modify an internal data-base recording the state of var-
ious control options in the machine under test;

• issues appropriate commands down the relevant control line;

• formats a display packet to reflect any changed control value and sends this to the
screen.handler .

The filter process :−
• continuously receives data from itsmonitor channels about the state of the machine;

• filters this data by integrating it into a ‘‘history’’ database (internal to this process);

On Serialisation - 4 - Welch & Justo

• reports meaningful summaries about changing machine state in display packets to the
screen.handler .

Thescreen.handler :-

• multiplexes formatted display packets straight through to itsscreen channel;

• ‘‘error’’ signals from the keyboard are interpreted by ‘‘bleeping’’ the screen;

• a ‘‘ pause’’ signal causes this process to lock on to its channel from the keyboard and
aw ait a ‘‘resume’’ signal — freezing further screen output;

• thekey.handler signals take priority over display packets.

We claim that this design is much simpler than any equivalent serial one. Each process
has responsibility for one distinct area of operation.Its data-structures are its own affair
and its algorithm is expressed from its own (‘‘object-oriented’’) point of view — not that of
an external controller. Strong engineering principles are followed in this design: processes
have tightly controlled external interfaces (only channels) and high internal cohesion (with
all design details private). Eachprocess is now sufficiently simple so that a serial (occam)
implementation is probably clearer than any natural language specification.

The same could not be said about any serial implementation for the wholetest.rig !
That would require an integration of the algorithms and data structures of the four processes
into a single thread of control.Such an integration would invert their object-oriented char-
acter and gravely damage their clarity. Worse still, in order to maintain the same freedom
to synchronise with its environment that the parallel implementation enjoyed, it would
sometimes have to ALT across all its channels — both input and output! It must maintain
this freedom — deadlock would threaten if it ever committed itself solely to output a con-
trol adjustment to any part of the machine that happened to be close to another part from
which feedback monitoring was being obtained!!The output guards may be removed by
further transformation [2], but it would now hav egot very obscure indeed.

It would therefore be very risky to attempt a serial implementation of thetest.rig . The
parallel implementation is the correct one — even though we never hav eany need or inten-
tion of distributing it over more than one processor!

3. Serialisation and General Purpose Parallel Computing

If you have one processing unit, then you have an excuse for trying to devise your algo-
rithms with a single thread of control. If you have two processors, then two process logic
would seem appropriate. If you have eight processors, you can make a case that the most
effective way to exploit them to solve a particular problem is to program it up as eight par-
allel processes. What is not credible, however, is to replace each ‘‘eight’’ in the preceding
sentence by, say, ‘‘twenty three’’ or ‘ ‘one hundred and eighty seven’’!

Even if we stick to one parallel computing architecture and one particular installation of
that architecture, the number of working compute nodes allocated to us for any particular
run will be somewhat variable. To cope with these conditions, we must design our algo-
rithms with (apparently) excessive parallelism — at least ten times as many processes as we
are ever likely to be allocated processors.Then, without re-designing the software, it
becomes possible to configure it to the resources we are actually given. Ideally, this should
happen automatically as the system is being loaded (when its resources become apparent).
Even better, we can envisage the possibility of dynamic balancing of the software processes
against the given hardware (e.g. during your run, some nodes may fail or be taken away
from you by the operating system or you may even be granted extra ones!).

On Serialisation - 5 - Welch & Justo

For the moment, with currentoccam/transputersystems, we need a few minutes notice of
the resources we are going to be given in order to change some configuration constants or,
in the worst case, perform some mechanical code transformations and re-compile.How-
ev er, the parallel slackness means that no re-design is necessary.

There is one other compelling reason for designing with an excess of parallelism.Only
parallel ‘‘farming’’ algorithms run compute nodes that operate most of their time com-
pletely independently. All other parallel paradigms require significant interaction between
processors. Considerthe view from a particular processing node. Because the time to
acquire information held on other nodes is so great compared with the time to load informa-
tion from our own node, we must find some useful work for our node to get on with whilst
aw aiting external information or accept a low efficiency of use from our node.With a large
number of processes being managed by our node, it is very unlikely they will all become
blocked awaiting external events at the same time.Hence, there is always something prof-
itable to be doing and we obtain high efficiency. See Valiant’s papers [3, 4] for a detailed
analysis on the merits of this ‘‘parallel slackness’’.

We now hav ethree grounds for designing systems with a high degree of parallelism :−
• it is good (software) engineering — i.e. it makes system design, verification and mainte-

nance easier;

• it giv es us portability across different physical configurations of a particular multi-pro-
cessor architecture (ultimately, occamwill give us portability across different architec-
tures as well);

• it enables a high efficiency of use for each individual processor — i.e. it makes the sys-
tem go faster!

Serialisation of these excessively parallel designs now becomes a viable optimisation
technique. Itis not always applicablebut, with so many processes allocated to each proces-
sor, it can:−
• save time:by eliminating context switches and the copying of data packets between

processes;

• save space:by having a common data area for shared data-structures, rather than sepa-
rate buffers in each process.

With a sub-microsecond overhead intransputers, context switching is not really a prob-
lem. However, significant savings can sometimes be achieved on the other two items.

Beware that serialisation — whilst always possible — will not always prove to be an opti-
misation. Theuser-interface component described in the previous section is constrained to
operate at the speed of a user-terminal. Serialisingits processing logic will not address that
bottleneck!

Beware also that serialisation can — and usually does — lead to an explosion in the
length and complexity of the resulting code.This can be so excessive as to render the
whole operation impractical.In the following sections, we describe some examples where
the synchronisation characteristics of the processes we are combining are sufficiently well-
behaved to allow the serialisations to work. Notethat the resulting code should be consid-
ered as ‘‘compiled’’ code — software engineering principles are not upheld and this is not
the level at which the components should be maintained.

In the above paragraphs, we have only been discussing the processes thatdirectly contrib-
ute to the algorithm that solves the original problem. On any particular node, there will be

On Serialisation - 6 - Welch & Justo

a further collection of (high-priority) processes to manage external communication and
ev ents. Thisis because a physical node in a credible multi-processor machine will itself be
a parallel device. It may have only one compute engine, but it will certainly have multiple
communications engines that can operate at the same time.Therefore, there is a minimum
level of parallelism to which each node must be programmed if it is to be used to its full
advantage.

Thus, even an efficient ‘‘farm’’ worker on atransputerneeds a harness of eight support
processes (to drive all its links bi-directionally and in parallel with its main task).For
occamand the current generationtransputer(T2s, T4s and T8s), these high-priority buffers,
auto-prompters, multiplexors and forwarders have become well known, very simple and
standardised. Somuch so that in the new generation T9000transputers, some of these pro-
cesses are in hardware! Noattempt, of course, should be made to serialise any (remaining)
high-priority processes with the background application-specific tasks.

4. Serial ‘‘In-Lining’’ of a Simple Server

In simulating the growth of ‘‘dif fusion limited aggregates’’ [5], the computationally inten-
sive innermost loop consisted of executing a random walk over a regular lattice. Anything
that could be done to speed up these walks had a direct and equal effect on the speed of the
entire simulation.

Each step of the walk consisted of obtaining three random bits to decide the direction of
the step, making the step (i.e. updating some coordinates) and checking to see if you had
reached a ‘‘sticky’’ t ile (which indicated the end of the walk). We used the random number
algorithm from [6] that produces acceptable sequences for our application, whilst being
computationally light. Despite this lightness, most of the time for each step was spent com-
puting these numbers — there being so little else to do!

The proper way to implement the random number generator is as aserver, continuously
pushing its results towards itsclient :−

random

(n, initial)
application

where :−
PROC random (VAL INT n, initial, CHAN OF INT out)

-- outputs n random bits per communication
INT seed:
... other state declarations
SEQ

seed := initial
... initialise rest of state
WHILE TRUE

INT word:
SEQ

... compute n r andom bits in word & update seed etc.
out ! word

:

On Serialisation - 7 - Welch & Justo

and :−
PROC application (CHAN OF INT from.random, ...)

... local declarations

... body
:

and where, deep inside thebody , the innermost loop goes :−
WHILE walking

INT next:
SEQ

from.random ? next
... rest of step

This is good engineering. The application has no responsibility for maintaining the ran-
dom number seed nor for the random number logic.The seed is a private data-structure,
encapsulated and hidden by the random number server that alone needs to know about it.

However, we want to remove the overhead of running the server as a separate process
from its client. The serialisation in this case is quite easy. We first have to decide which (if
any) of two threads of control to retain as defining the structure of the unified thread of con-
trol. The logic of the client application is fairly complex outside its innermost loop and
would not take kindly to the inversion of its logic if it were not chosen.On the other hand,
the server control structure is rather trivial and can, therefore, take the necessary knocks.

So, theapplication stays in charge! It must inherit the parameters of its absorbed
server — apart, of course, from the connecting service channel that now disappears :−

new.application

(n, initial)

Internally, it picks up any persistent data-structures from the server (i.e.seed etc.) and
installs any server initialisation code :−

On Serialisation - 8 - Welch & Justo

PROC new.application (VAL INT n, initial, ...)
... (old) local declarations
INT seed: -- from random
... other state declarations -- from random
SEQ

seed := initial -- from random
... initialise rest of state -- from random
... (old) body

:

We must ‘‘in-line’’ the server loop code wherever thebody used to demand service :−
WHILE walking

INT next:
SEQ

{{{ from.random ? next
INT word:
SEQ

... compute n r andom bits in word & update seed etc.
next := word

}}}
... rest of step

We no longer have a context switch to be performed and the server communication has
been replaced by an assignment.

Finally, we observe that the transient data-structureword (inherited from the server) can
be dispensed with, along with the data-copying assignment, and we compute the result
directly where it is needed :−

WHILE walking
INT next:
SEQ

... compute n r andom bits in next & update seed

... rest of step

From an engineering point of view, this code is not as manageable as the original.Client
and server data-structures are mixed up and so is the logic that operates on them.However,
our walking speed has increased from 93,000 steps per second to 127,000!

5. Serialisation of Pipe-Lined Logic

5.0. Basic Principles

Some pipelines are designed specifically for the buffering characteristics they introduce and
their ability to service their supplier and consumer processes in parallel.For example, this
technique enablestransputersto communicate and compute at the same time.Serialisation
is probably not the right way to try to optimise these pipelines — see [7], [8] and [9] for a
discussion on this.

Other pipelines are introduced to separate the phases of a particularly complex function
into manageable stages.We concentrate on these and show how to serialise them so as to
preserve their overall functionality, but not worry too much about the buffering services
they originally provided. Theenvironment in which such a pipeline is applied is only inter-
ested in the mathematical transformation being performed — indeed, one of the optimisa-
tions being sought through this serialisation is the elimination of superfluous data-buffers
and data-copying. Formally, the semantics of the (originally pipelined) component will be
preserved with respect to an environment that is always willing to accept its output.

On Serialisation - 9 - Welch & Justo

Consider a component process with a single input and a single output channel.We call
such a component ap-q-transformerif it synchronises with its environment by cycling
through the sequence: first dop inputs and then doq outputs.

If it is implemented with code of the form :−
PROC transform (CHAN OF A in, CHAN OF B out)

... state declarations
SEQ

... initialise state
WHILE running

SEQ
... do p i nputs
... compute
... do q outputs

:

where we also allow computation to be interleaved amongst the above inputs and out-

puts , we say the transformer is innormalform.

Serialising a pipeline ofnormal form 1-1-transformersis fairly easy. It becomes a new
normal form 1-1-transformerthat contains all the state variables of the original pipeline
components (modulo some name changes to avoid any clashes). Allinitialisations on these
states are first performed (in any sequence) and its main cycle then :−

• inputs (as in the first component of the pipeline);

• performs the sequences of computations made from the individual computations from
each component in the pipeline.The order of this sequence is the same as the order of
the components in the pipeline.The communications between pipeline components
become assignments between corresponding state variables;

• outputs (as in the last component of the pipeline).

In the computation phase above, there is plenty of opportunity for state-variable and
assignment elimination.

If a transformer is not innormal form, then part of its state is governed by where it is in
its code. By introducing further state variables to represent these positions and testing these
within its compute section, any non-normal form transformer can always be transformed
into normalform.

5.1. Structure Clash within the Pipeline

The result of normalising and serialising a pipeline of1-1-transformerswill be more com-
plex than the original code. Things get really exciting, however, when we do the same for a
pipeline ofp-q-transformerswith differing p andq values!

Consider part of an image compression pipeline :−

a
encode

b
pack

c

where channelsa, b andc respectively carry the protocols :−
PROTOCOL PICTURE IS [height][width]BYTE:
PROTOCOL BITS IS BOOL:
PROTOCOL PACKET IS [packet.size]INT:

On Serialisation - 10 - Welch & Justo

A stream of (fragments of) pictures arrive on channel↵a and are ‘‘Huffman-encoded’’
into a compressed bit-stream on channelb. The encoding operates on differences between
neighbouring pixels — small ones are Huffman-encoded, larger differences are transmitted
plain (preceded by an ‘‘escape’’ code). Thebit-stream fromb is packed into a decently
sized packet for onward transmission downc (and out of thetransputer).

The encode process is a1-‘‘many’’-transformer, where‘‘ many’’ is data-dependent.The
pack process is apacket.size-1-transformer. There is a serious structure clash here!The
parallel design protects us completely from its difficulties :−

PROC encode (CHANNEL OF PICTURE in, CHAN OF BITS out)
WHILE TRUE

[height][width]BYTE picture:
SEQ

in ? picture
SEQ i = 0 FOR height

VAL [width]BYTE line IS picture[i]:
... compress line

:

where :−
{{{ compress line
INT last.pixel:
SEQ

last.pixel := 127
SEQ j = 0 FOR width

VAL INT pixel IS INT line[j]:
SEQ

VAL INT diff IS (pixel — last.pixel) + 255:
VAL INT n IS n.bits[diff]:
INT code:
SEQ

code := h.code[diff]
... emit bottom n bits of code

last.pixel := pixel
}}}

and where :−
VAL [510]INT n.bits IS [...]:
VAL [510]INT h.code IS [...]:

are compile-time constant tables holding, respectively, the number of bits and the actual
code values for each possible change in pixel intensity. Finally :−

{{{ emit bottom n bits of code
SEQ k = 0 FOR n

SEQ
out ! (code /\ 1) = 1
code := code >> 1

}}}

The structure of the above code is derived naturally from the specification ofencode .
The same thing happens for :−

PROC pack (CHAN OF BITS in, CHAN OF PACKET out)
WHILE TRUE

[packet.size]INT packet:
SEQ

SEQ p = 0 FOR packet.size

On Serialisation - 11 - Welch & Justo

INT word IS packet[p]:
SEQ

word := 0
... input bits into word

out ! packet
:

where :−
{{{ input bits into word
INT bit:
SEQ

bit := 1
SEQ q = 0 FOR WORD.SIZE

BOOL b:
SEQ

in ? b
IF

b
word := word \/ bit

TRUE
SKIP

bit := bit << 1
}}}

This completes the programming.The structure clash between the synchronisation char-
acteristics of the two elements is absorbed by the run-time scheduler. The use of parallel-
ism to design such a clean solution to this problem was first described (to our knowledge)
in the book by Jones and Goldsmith [10].

5.2. A Serialising Optimisation

The problem with leaving the code like this is that the bit-stream channel (whether mapped
on to memory or an external link) imposes a bottleneck on the data-flow! It must be
removed — i.e. we must serialise theencode andpack processes.

We hav eto chose which process structure to preserve — it does not really matter which.
Let us choose to preserve encode (since it has three nested loops in its cycle andpack has
only two).

The state of thepack process is represented by its variablespacket , word , bit , p andq.
Import these variables into what used to be the structure of theencode process and is now
the serialised :−

PROC encode.pack (CHAN OF PICTURE in, CHAN OF PACKET out)
INT word, bit, p, q:
[packet.size]INT packet:
SEQ

word, bit, p, q := 0, 1, 0, 0
... structure of the encode process

:

On Serialisation - 12 - Welch & Justo

Theencode structure is unchanged except for its single output (deep inside itsemit fold).
This output triggered a cycle of thepack process — it is replaced by a fold that contains
that logic with its housekeeping all inverted :−

{{{ out ! (code /\ 1) = 1
SEQ

... ‘pack’ response to the communication

... ‘pack’ housekeeping
}}}

where :−
{{{ ‘pack’ response to the communication
SEQ

IF
(code /\ 1) = 1

word := word \/ bit
TRUE

SKIP
bit := bit << 1

}}}

and :−
{{{ ‘pack’ housekeeping
SEQ

q := q + 1
IF

q = WORD.SIZE
SEQ

packet[p], word, bit, q := word, 0, 1, 0
p := p + 1
IF

p = packet.size
SEQ

out ! packet
p := 0

TRUE
SKIP

TRUE
SKIP

}}}

That completes the transformation.Designing such complex serial code directly would
not be a good idea!!

The alternative transformation — i.e. retaining the structure ofpack and inverting encode

into it — leads to a very different serial structure.This is left as an exercise for the reader!
Note, however, that the transformations (via the original parallel code) will prove the equiv-
alence of two very different serial versions.

5.3. Further Optimisations Now Become Possible

Of course, now that the code is serial and the innermost loops from the two original pro-
cesses have been interleaved and can see each other’s data-structures, further optimisations
become possible.For instance, the resulting innermost loop (in theemit fold) transfersn
bits from code over to word one bit at a time!Clearly, this loop can be removed and the
transfer done in one go :−

On Serialisation - 13 - Welch & Justo

{{{ emit bottom n bits of code
SEQ

word := word \/ (code << q)
q := q + n
IF

q >= WORD.SIZE
SEQ

q := q - W ORDSIZE
packet[p], word := word, code >> (n - q)
p := p + 1
IF

p = packet.size
SEQ

out ! packet
p := 0

TRUE
SKIP

TRUE
SKIP

}}}

Note thatcode should now be declared as aVAL and that thebit pointer and, of course,
the innermost loop control variablek are no longer needed.

All these codes plus the necessary buffers can be fitted into the on-chip memory of a T2
transputer. On a 20 MHz T800 (alas, we have no T2s), the original clean parallel code took
7.3 µsecs. to produce one compressed bit of output.The first serialisation reduced this to
4.6 µsecs. Thelast optimisation above (that was enabled by the serialisation) reduced this
further to 2.1µsecs. We could go on, but again we leave this to the interested reader. [Of
course, all run-time checks — including those for array-bound violation — wereleft on for
the above timings. Switchingthem off is always a false economy!]

6. Arbitrary Topologies with Well-Behaved Synchronisation

6.0. Basic Principles

Our final example is taken from the field of continuous system simulation (e.g. distribution
networks for gas or electricity, urban traffic flow, digital circuit emulation ...). The simple
way to design the simulation is to create a network of software processes that directly mir-
rors the physical network of processes in the real system.Any topology — including those
with feedback — must be allowed.

In general, attempts to optimise an arbitrary process network by serialisation will lead to
an impractical explosion in the size of the resulting code.However, the synchronisation
characteristics of the processes studied here are simple and regular — each process commu-
nicates continuously and in parallel with all its topological neighbours. This is generalised
‘‘ systolic’’ computing — irregular networks with feedback are allowed as well as regular
meshes. For such systems, serialisation does not cause a bang!

In [11], the notion of anI/O-PAR process was introduced.Informally, an I/O-PAR
process is one that, whenever it communicates, communicates on all its channels in parallel.
The following two processes areI/O-PARand innormalform :−

On Serialisation - 14 - Welch & Justo

PROC A (...) PROC B (...)
... declarations A . .. declarations B
SEQ SEQ

... initialise A . .. initialise B
WHILE TRUE WHILE TRUE

SEQ SEQ
... parallel i/o A ... parallel i/o B
... compute A . .. compute B

: :

A key property ofI/O-PARprocesses is that any parallel network of them is deadlock-free
and remainsI/O-PAR— that is why it is so easy and safe to design with them!

Clearly, a network of I/O-PAR processes can synchronise with its environment more
freely than one innormal form. At any particular moment, such a network may have com-
municated on one of its channels several more time than it has communicated on one of its
other channels (where ‘‘several’’ i s bounded by the maximum ‘‘diameter’’ of the network).
However, a network in this condition will always be offering its environment communica-
tions on its more backward channels (that would enable the number of times they hav ebeen
used to catch up with the leader).For an I/O-PARprocess innormal form, the ‘‘several’’ i s
limited to one.

If we place a collection ofI/O-PAR processes in an environment that is itselfI/O-PAR
(with respect to its connections to that collection), then that collection may be serialised
into anI/O-PARprocess innormal form without changing the semantics of the whole sys-
tem.

These results are more formally presented in [12], together with the serialising transfor-
mations and some proofs! Here we are somewhat less formal. Suppose we want to run
processesA andB in parallel :−

PROC A.B (...)
... ‘internal’ channels for connecting A and B
PAR

A (. ..)
B (. ..)

:

where the parameters forA.B are the union of those forA and those forB, less their inter-
connecting channels.

To serialise them, we extract a set of execution paths that can be expressed inI/O-PAR
normal form. Thiscertainly loses some of the paths that were available to the original par-
allel code — but since we are only going to run the derived code in anI/O-PARenviron-
ment that is not going to exploit those extra paths, this does not matter!The serialised code
is :−

PROC A.B (...)
... declarations A
... declarations B
SEQ

... initialise A

... initialise B

... serialised A and B loop
:

Since they concern separate sets of state variables, the order of theinitialise sections
derived from A andB is irrelevant. Sinceno communications are involved (i.e. the external

On Serialisation - 15 - Welch & Justo

environment cannot detect what is happening), it is safe to serialise them. The same is true
for the respective compute sections inside the loop :−

{{{ serialised A and B loop
WHILE TRUE

SEQ
PAR

... parallel i/o A (except ‘internals’)

... parallel i/o B (except ‘internals’)

... ‘internal’ assignments
... compute A
... compute B

}}}

The position of the respective parallel i/o sections clearly represents a synchronisation
behaviour with its environment that the original parallel code could have chosen. Thatis all
we promised to do!

In parallel with those communications are a set of assignments between the state vari-
ables ofA andB. These are derived from the original ‘‘internal’’ communications between
A and B. Again, because no external communications are involved, it is safe to serialise
these assignments (in any order — because the anti-alias and usage rules ofoccamensure
there can be no data-dependencies!).Also, because there are no usage conflicts with the
i/o (currently happening in parallel), it is safe to move these assignments to the start of the
compute region of the cycle :−

{{{ serialised A and B loop
WHILE TRUE

SEQ
PAR

... parallel i/o A (except ‘internals’)

... parallel i/o B (except ‘internals’)
... ‘internal’ assignments
... compute A
... compute B

}}}

This last change is, of course, undetectable by its environment and the code is now nor-
mal form I/O-PAR— as required.

Another key property of processes, discussed in [11, 12], isI/O-SEQ. This is similar to
I/O-PAR except that input communications are serialised before output ones.However,
input communications are still all parallel — i.e. when one input happens, all inputs must
happen. Thesame is true for outputs. The following process is innormal I/O-SEQform :−

PROC C (...)
... declarations C
SEQ

... initialise C
WHILE TRUE

SEQ
... parallel inputs C
... compute C (part 0)
... parallel outputs C
... compute C (part 1)

:

On Serialisation - 16 - Welch & Justo

The second general result is this: if we run anI/O-SEQprocess in parallel with anI/O-
PAR process that supplies all its input, they may be serialised into anI/O-PARprocess in
normalform (again modulo an environment that is itselfI/O-PAR).

Suppose that these conditions apply to processesA and C above. A valid (sub-)set of
execution paths is given by the serialisation :−

PROC A.C (...)
... declarations A and C
SEQ

... initialise A and C
WHILE TRUE

SEQ
PAR

... parallel i/o A (except ‘internals’)
SEQ

... ‘internal’ assignments (from A to C)

... compute C (part 0)
PAR

... parallel outputs C (except ‘internals’)

... ‘internal’ assignments (from C to A)
... compute A and C (part 1) - any order

:

Again, we may move the internal assignments and computations around a bit :−
WHILE TRUE

SEQ
... ‘internal’ assignments (from A to C)
... compute C (part 0)
... ‘internal’ assignments (from C to A)
PAR

... parallel i/o A (except ‘internals’)

... parallel outputs C (except ‘internals’)
... compute A and C (part 1) - any order

while the parallel usage rules ensured that there were no data-dependencies to prevent us!

6.1. Applying the Transforms

We will take a concrete example from [11]. Fundamental gates used in digital logic circuits
are emulated byI/O-PARprocesses. For instance, a two-inputnand gate is given by :−

in.0

in.1

out

PROC nand (CHAN OF INT in.0, in.1, out)
INT a.0, a.1, b.0, b.1:
SEQ

b.0, b.1 := undefined, undefined
WHILE TRUE

SEQ
PAR

in.0 ? a.0
in.1 ? a.1
out ! ∼(b.0 /\ b.1)

PAR
in.0 ? b.0
in.1 ? b.1
out ! ∼(a.0 /\ a.1)

:

On Serialisation - 17 - Welch & Justo

Becauseoccamchannels have to be ‘‘point-to-point’’, branches in wiring have to be rep-
resented by active processes :−

out.0

out.1

in

PROC delta (CHAN OF INT in, out.0, out.1)
WHILE TRUE

INT x:
SEQ

in ? x
PAR

out.0 ! x
out.1 ! x

:

The I/O-SEQnature of the above process corresponds to a digital logic component with
zero propagation delay. Such components, therefore, have no impact on the timing charac-
teristics of the circuit being emulated and may be freely used.

The previousnand process corresponds to a component with a propagation delay equal to
one (emulated) sample interval between incoming logic values. Variable length propaga-
tion delays can be easily modelled by addingI/O-PAR‘‘ delay-line’’ processes, parametrised
to the required value.

A four-valued logic is emulated in these processes:TRUEandFALSE (represented by11

and00 respectively) and two ‘‘undefined’’ l ev els (represented by10 and01). Noticethat,
for a word length of 32, up to 16 independent sets of wav efront trials can be conducted
simultaneously.

A simple circuit with feedback is thelatch :−

latch

p

q

s

r

in.0

in.1

out.0

out.1

which can, of course, be instantly implemented :−
PROC latch (CHAN OF INT in.0, in.1, out.0, out.1)

CHAN OF INT p, q, r, s:
PAR

nand (in.0, r, p)
nand (s, in.1, q)
delta (p, out.0, s)
delta (q, r, out.1)

:

To serialise this, let us first join theI/O-PAR logic gate with its adjacentI/O-SEQ‘‘ fan-
out’’ process. Thistransformation is based upon the second one given in the previous sub-
section, extended in the obvious way to cope with the two I/O-PAR phases of thenand

cycle :−

nand.delta

in.0

in.1

out.0

out.1

On Serialisation - 18 - Welch & Justo

PROC nand.delta (CHAN OF INT in.0, in.1, out.0, out.1)
INT a.0, a.1, b.0, b.1, a:
SEQ

b.0, b.1 := undefined, undefined
WHILE TRUE

SEQ
a : = ∼(b.0 /\ b.1) -- first phase
PAR

in.0 ? a.0
in.1 ? a.1
out.0 ! a
out.1 ! a

a : = ∼(a.0 /\ a.1) -- second phase
PAR

in.0 ? b.0
in.1 ? b.1
out.0 ! a
out.1 ! a

:

This is now in (two-phase)I/O-PAR normalform. Noticethat the variablesa.0 anda.1

need only have very local scope — that of the first parallel communications in the loop and
its following assignment.Next, by moving the first assignment in the loop to the end of the
loop (and, of course, duplicating it in the initialisation part), we observe that the same is
true for the variablesb.0 andb.1 . Localising both pairs of definitions and renaming them
to c.0 andc.1 , we end up with a loop whose body is a sequence of two identical phases.
This collapses to a simpleI/O-PAR normalform :−

PROC nand.delta (CHAN OF INT in.0, in.1, out.0, out.1)
INT a:
SEQ

a : = ∼(undefined /\ undefined)
WHILE TRUE

INT c.0, c.1:
SEQ

PAR
in.0 ? c.0
in.1 ? c.1
out.0 ! a
out.1 ! a

a : = ∼(c.0 /\ c.1)
:

Now, the latch runs two instances of thisnand.delta in parallel. This may now be seri-
alised by applying the first transform from the previous section.We hav e to rename the
internal state-variables to avoid clashes — we do this by adding the suffix .hi to those from
the ‘‘higher’’ nand.delta and.lo to the ‘‘lower’’ one :−

On Serialisation - 19 - Welch & Justo

PROC latch (CHAN OF INT in.0, in.1, out.0, out.1)
INT a.hi, c.0.hi, c.1.hi:
INT a.lo, c.0.lo, c.1.lo:
SEQ

a.hi, a.lo := other.undefined, other.undefined
WHILE TRUE

SEQ
PAR

in.0 ? c.0.hi
out.0 ! a.hi
in.1 ? c.1.lo
out.1 ! a.lo

c.1.hi, c.0.lo := a.lo, a.hi
a.hi := ∼(c.0.hi /\ c.1.hi)
a.lo := ∼(c.0.lo /\ c.1.lo)

:

Clearly, the variablesc.1.hi and c.0.lo may be dispensed with and their assignment
costs saved — the a.lo and a.hi values being used directly in the final assignments.
Renamingc.0.hi andc.1.lo as t.hi and t.lo respectively and localising their declara-
tion, we are left with :−

PROC latch (CHAN OF INT in.0, in.1, out.0, out.1)
INT a.hi, a.lo:
SEQ

a.hi, a.lo := other.undefined, other.undefined
WHILE TRUE

INT t.hi, t.lo:
SEQ

PAR
in.0 ? t.hi
in.1 ? t.lo
out.0 ! a.hi
out.1 ! a.lo

a.hi, a.lo := ∼(t.hi /\ a.lo), ∼(a.hi /\ t.lo)
:

Looking at the resulting code, it is possible that it could have been coded like that in the
first place. However, the serialised code only collapsed to this simple form because of the
symmetry in the original circuit.Less regular circuits would require serial code we would
not like to compose directly!For example, a latch circuit whose gates imposed different
propagation delays!!

The resource demands from the two versions of the above latch component are signifi-
cantly different. Theparallel version requires 308 bytes of workspace and processes
incoming signal sample ‘‘wav efronts’’ at the rate of one every 36 µsecs. Thefinal serial
version only requires 84 bytes of workspace and cycles in 15µsecs.

We would expect similar benefits to be obtained from serialising larger circuits —
enabling them to be emulated in the same (real) time from the same (transputer) hardware
resources. Without automatic tools, however, we would not like to try it!

On Serialisation - 20 - Welch & Justo

7. Discussion

A recent article [13] on parallel computing in the popular computing magazineBYTEends
with the following paragraph :− ‘‘ The hardware issue has already been solved, thanks to the
INMOS transputer. Software remains the final hurdle to clear if parallel processing via
multicomputers is to emerge as a popular alternative to sequential processing.’ ’

This point-of-view is a little worrying. Whilst the article mentionsC and FORTRAN, it
makes no no reference tooccam. Yet occamwas devised specifically to address the soft-
ware and hardware issues associated with parallel computing [14, 15, 16, 17] — the secu-
rity weaknesses in ‘‘standard’’ programming languages disqualifying them from being
robust platforms on which to build concurrent systems.Occamwas dev eloped simultane-
ously with thetransputerand the latter would not exist (as we know it) without the former.
If you only pick up half the groceries, don’t complain if you get hungry!

Our experience from working withoccamis that hardware issues and software issues are
no different from one another. We adopt the same approach for each. Both are designed as
parallel systems — it’s just that the hardware designs tend to stay parallel, while the soft-
ware elements sometimes get serialised a little bit!

The second sentence of the above quotation endorses the common belief that it is some-
thing in theparallelismthat causes the difficulty in the software. Thetheme of this paper is
that this is false — it is the attempt to write complex serial code directly that causes (and
always has caused) the problems.

We hav eargued that parallelism is a high-level programming concept. It enables us to
capture complex system behaviour much more directly, concisely and simply than any
equivalent (low-level) serial code. On the practical side, to develop application software
that will be portable and efficient across different architectures and configurations of multi-
processor, we needmuch more parallelism in our algorithms and data-structures than we are
ev er likely to be offered in hardware.

We hav econsidered three different applications (the simulated growth of diffusion limited
aggregates, image compression and digital logic emulation) and demonstrated three differ-
ent parallel paradigms (client/server, pipe-lines and arbitrary feedback networks) that yield,
respectively, well-engineered solutions for them.For each of these cases, we have shown
how to transform (‘‘compile’’) them into equivalent serial code that is more efficient in
terms of its space and time requirements, but is more complex and less well-engineered.In
general, we have little confidence in our ability to produce such serial code directly and
none in our ability to maintain it.

The serialising optimisations we have used are all constructively defined and can clearly
be automated.We see an urgent need for tools to do these transformations for us. In the
medium term, serialising will be an everyday activity for parallel programmers and pro-
grammers make too many mistakes on their own! We also need these serialising tools inte-
grated into asecure development environmentalongside their complementary (‘‘folding’’)
editor, compiler and maintenance tools — i.e. the INMOSTDS [18], or something that
shares its philosophy, must be re-born.Eventually, serialisation may be hidden from us by
being incorporated into the compiler, loader or dynamic load balancer.

‘‘ Computer algebra’’ tools (e.g. [19]) have been developed and are in significant use by
mathematicians to help them manipulate their formulae. It seems extraordinary that com-
puter scientists (who made those tools for the mathematicians) have not demanded similar
help. We are far too confident in our abilities to manipulate our formulae (i.e. programs) —

On Serialisation - 21 - Welch & Justo

evidence of ourinability is widespread.

The real reason for the lack of program manipulation tools (insignificantuse) is that the
programming languages (insignificantuse) do not allow formulae (i.e. programs) with the
same simple algebraic properties as are enjoyed in mathematics. Languages such asC and
FORTRANhave ill-defined and highly complex semantics that rule out the prospect for any
formal analysis or manipulation.

On the other hand, transformation tools exist for somefunctionalprogramming languages
and also, of course, foroccam[20, 21]. Occamis the exception to the general statement in
the preceding paragraph. It is the only programming language in significant (industrial) use
that only allows formulae (i.e. programs) with simple algebraic properties.Nevertheless,
the use of the Oxford tools [21] is not very widespread — it seems not to have gone much
beyond INMOS (and its sub-contractors), where it has played a crucial role in the design of
major features of the T9000transputer[22]. TheOxford tools do not include the serialis-
ing transforms described in this paper. We are keen to use such tools at Kent and work is in
progress here to produce them.

Finally, we summarise our approach to (parallel) computing applications :−
• design a solution incorporating as much parallelism as naturally falls out from the appli-

cation — this is usually massive;

• balance this across the number of processors at our disposal — this is easy so long as
the parallelism in the algorithm greatly exceeds the parallelism in the hardware;

• for each individual node, serialise the worker processes so long as this yields significant
optimisations — i.e. a complete serialisation is not always necessary and may be
counter-productive. We need tools to assist us in this.

We hav ebeen fortunate in being able to avoid working with ‘‘dusty decks’’. Extracting
parallel code from them (in order to exploit parallel hardware) is as hard as extracting
‘‘ high-level’ ’ source code from a raw assembler listing.It’s quicker and safer and cheaper
to go back to the original problems and re-write them from scratch using the higher para-
digm. We must, of course, use a proper multi-processing language that allows the use of
formal methods and enables us, and automated tools, to work.

8. Acknowledgements

The work of one of the authors (GRRJ) has been funded by the Brazilian Research Council
(CNPq), under grant No. 205034/88-8, and we are especially grateful for their support.

We are also indebted to the community of parallel system engineers within the Comput-
ing Laboratory at the University of Kent, who have created the culture from which the par-
ticular experiences reported in this paper have been drawn. Thatwork has been variously
supported by the Computer Board Initiative on Software Environments for Parallel Com-
puters, the SERC/DTI Transputer Initiative, the Royal Armament Research and Develop-
ment Establishment and the COMETT training programme of the EEC.

9. References

[0] C.A.R.Hoare:‘‘ Communicating Sequential Processes’’; Prentice-Hall; 1985.

[1] INMOS Ltd.: ‘‘ occam2 Reference Manual’’ ; Prentice-Hall; ISBN 0-13-629312-3;
1987.

On Serialisation - 22 - Welch & Justo

[2] G.Jones:‘‘ On Guards’’; in ‘ International Workshop on the Parallel Programming of
Transputer-Based Machines’, the Proceedings of the 7th. Occam User Group Techni-
cal Conference, Grenoble, France; edited by T.Muntean; IOS Press, Holland;
September 1987.

[3] L.G.Valiant: ‘‘ Bulk-Synchronous Parallel Computing’’ ; in ‘Parallel Processing and
Artificial Intelligence’; edited by M.Reeve and S.E.Zenith; John Wiley & Sons Ltd.,
England; ISBN 0-471-92497-0; July 1989.

[4] L.G.Valiant: ‘‘ A Bridging Model for Parallel Computation’’ ; Commun. ACM 33, 8,
pp. 103-111; August 1990.

[5] D.R.Morse,A.M.Welch and P.H.Welch:‘‘ Diffusion Limited Aggregation: an Example
of Real-Time Parallelisation’’; in ‘Real-Time Systems with Transputers’, the Pro-
ceedings of the 13th. Occam User Group Technical Conference, York, England;
edited by H.Zedan; pp. 248-261; IOS Press, Holland; September 1990.

[6] S.K.Park and K.W.Miller: ‘‘ Random Number Generators: Good Ones are Hard to
Find’’ ; Commun. ACM 31, 10, pp. 1192-1201; October 1988.

[7] R.Peel:‘‘ Issues Raised while Implementing a Layered Protocol using Occam and the
Tr ansputer’’; in Proceedings of the 10th. Occam User Group Technical Conference,
Twente, The Netherlands; edited by A.Bakkers; IOS Press, Holland; April 1989.

[8] G.Jones:‘‘ Efficient Multiple Buffering in Occam’’ ; in Occam User Group Newsletter,
No. 11, pp. 36-44 (July 1989).

[9] P.H.Welch: ‘‘ Securely Managed Pointers’’; in Occam User Group Newsletter, No. 15
(July 1991).

[10] G.Jonesand M.H.Goldsmith:‘‘ Programming in Occam2’’ ; Prentice-Hall; ISBN
0-13-730334-3; 1988.

[11] P.H.Welch: ‘‘ Emulating Digital Logic Using Transputer Networks (Very High Paral-
lelism = Simplicity = Performance)’’; in ‘Parallel Architectures and Languages
Europe - Volume 1’; Lecture Notes in Computer Science, vol. 258, pp.357-373;
Springer-Verlag; June 1987.

[12] G.R.R.Justoand P.H.Welch: ‘‘ Synthesis of Deadlock-Free Parallel Programs’’; in
Proceedings of the 3rd. pan-Hellenic Conference on Information Technology, Athens,
Greece; pp. 46-59; May 1991.

[13] R.M.Stein: ‘‘ Scaling Up: Get the Message?’’ ; in Byte, June 1991, pp. 231-244;
McGraw-Hill; June 1991.

[14] C.A.R.Hoareet al. : ‘‘ Laws of Programming’’; Commun. ACM 30, 8, pp.672-686;
August 1987.

[15] A.W.Roscoe and C.A.R.Hoare:‘‘ Laws of Occam Programming’’; Technical Mono-
graph PRG-53, Oxford University Computing Laboratory, Programming Research
Group, 8-11 Keble Road, Oxford, OX1 3QD, ENGLAND; 1986.

[16] R.Shepherd:‘‘ Security Aspects of Occam’’ ; Technical Note 28 (72-TCH-028-00);
INMOS Ltd., Bristol; 1987.

[17] G.Barrett:B.Sufrin, ‘‘ Formal Support for Distributed Systems: occam and the Trans-
puter’’. In ‘TRANSPUTING ’91’; IOS Press, Holland; ISBN 90-5199-056-6; April
1991.

On Serialisation - 23 - Welch & Justo

[18] INMOS Ltd.: ‘‘ Tr ansputer Development System’’ ; Prentice-Hall; ISBN
0-13-928-995-X 1988.

[19] S.Wolfram: ‘‘ Mathematica — a System for Doing Mathematics by Computer’’ ; Addi-
son-Wesley; 1991

[20] M.H.Goldsmith:‘‘ Occam Transformation at Oxford’’ ; in ‘ International Workshop on
the Parallel Programming of Transputer-Based Machines’, the Proceedings of the 7th.
Occam User Group Technical Conference, Grenoble, France; edited by T.Muntean;
IOS Press, Holland; September 1987.

[21] M.H.Goldsmith:‘‘ The Oxford Occam Transformation System — User Documentation
’’ ; Programming Research Group, Oxford University; January 1988.

[22] A.W.Roscoe, M.H.Goldsmith, A.D.B.Cox and J.B.Scattergood: ‘‘ Formal Methods in
the Development of the H1 Transputer’’. In ‘TRANSPUTING ’91’; IOS Press, Hol-
land; ISBN 90-5199-056-6; April 1991.

