Design, Verification, and Testing
of Synchronization and
Communication Protocols with
Java

G. S. Stiles, D. D. Rice,
and J. R. Doupnik
Electrical and Computer Engineering
Utah State University

5 July 2001 Copyright G. S. Stiles 2001

| ntroduction

Communication and Synchronization —
an important part of the curriculum:

Networking — all levels!
Distance Education Systems
Real-time & Embedded Systems

Concurrent Systems Design
— Operating Systems
— Applications

5 July 2001 Copyright G. S. Stiles 2001

| ntroduction

e Concurrent design: an important part
of software engineering:

— Modular design, with
— small, ssmple modules...
— that run concurrently, and
— Interact infrequently.
 Much easier than asingle, large
program!!

7/5/01 Copyright G. S. Stiles 2001

| ntroduction

Possible platforms;

— Visual C++
o Complex concurrency features
A year or more of experience
o .. and some OS experience

— Java
o Simple concurrency model
« Widely taught at the introductory level

7/5/01 Copyright G. S. Stiles 2001

Java Concurrency

Concurrency support:
— Simple thread model

— Mutual exclusion via synchronized:
e Objects
* Methods

— A limited conditional walit

— Shared variables

— Message-passing libraries

— Many texts

7/5/01 Copyright G. S. Stiles 2001

Java Concurrency

The Java synchronized primitive

— Each object has a hidden lock controlling
access to code marked as synchronized.

— Only onethread at atime may execute a
synchronized block of code.

7/5/01 Copyright G. S. Stiles 2001

Java Concurrency

Conditional Wait

— If acondition is not satisfied, wait() can be
called — releasing the lock.

— notify (or notifyAll) wakes the waiting threads.

7/5/01 Copyright G. S. Stiles 2001

Java Concurrency

e Caution!

— Java does not require that access to shared
resources be synchronized.

— The Java specification does not say which
thread is awakened on a notify.

* These operations must be used very
carefully!

7/5/01 Copyright G. S. Stiles 2001

CSP

o CSP: aprocess algebrafor dealing
with interactions between processes.

e The notation isssmple and intuitive.

e CSP does not deal (easily) with the
Internal behavior of processes.

7/5/01 Copyright G. S. Stiles 2001

The two components of CSP systems:
— Processes. indicated by upper-case: P, Q R, ...
— Events: indicated by lower-case: a, b, c, ...

7/5/01 Copyright G. S. Stiles 2001

CSP

Example: aprocess P engagesin
events b, ¢, a, and then refuses any
further action:

P=Db ® ¢c ® a® STOP

“® " Isthe prefix operator; STOP isaspecial process that
never engages in any event.

7/5/01 Copyright G. S. Stiles 2001

A practical example: asimple pop machine
accepts a coin, returns a can of pop, and
then repeats forever:

PM = coin ® pop ® PM

7/5/01 Copyright G. S. Stiles 2001

A customer who purchases only one can,
consumes it, and then terminates.

Cust = coin ® pop ® drink ® STOP

7/5/01 Copyright G. S. Stiles 2001

CSP

The pop machine and the customer
run in paralld:

System= PM[| A|] Cust

and synchronize on the alphabet
A = {coln, pop}

7/5/01 Copyright G. S. Stiles 2001

CSP

A multiplexer that accepts
an input from ether channel O

or channel 1, passes it out over
the channel out , and then repeats:

chO

Mux —> out
chi ——

chO?x ® out!x ® Mix

[]
chl?x ® out!x ® Mix

7/5/01 Copyright G. S. Stiles 2001

CSP and Java Design Procedure

e DesigninCSP
o Verfy the CSP with the FDR CASE

tools:
— Correctness

— Deadlock
— Livelock

e Implement and test in Java

7/5/01 Copyright G. S. Stiles 2001

Shared Memory Synchronization —
the bank balance problem
Origina balance = $1000

Interleaving 1.

t1
t2
t3
t4
t5
t6

ATM Payroll Computer
fetch $1000

balance = $1000 - $100

store $900

fetch $900
balance = $900 + $1000
store $1900

Final balance = $1900: Correct!

7/5/01 Copyright G. S. Stiles 2001

The bank balance problem

Origina balance = $1000

Interleaving 2:

t1
t2
t3
t4
t5
t6

ATM Payroll Computer
fetch $1000

fetch $1000
balance = $1000 + $1000
store $2000

balance = $1000 - $100

store $900

Final balance = $900: WRONG!

7/5/01 Copyright G. S. Stiles 2001

Bank Balance: Java
Solution:
force the fetch-store-update

seguence to be executed
atomically.

In Java: use a synchronized method (which returns the
new balance):

publ i ¢ synchroni zed
fl oat update_bal ance(fl oat deposit);

7/5/01 Copyright G. S. Stiles 2001

Bank Balance: Modeling in CSP

Create a CSP process that will
synchronize with all customers and
force the update to be done atomically.

First the customer:
Custoner = enter!deposit ->
exi t ?new bal ance ->

Cust oner

7/5/01 Copyright G. S. Stiles 2001

Bank Balance: CSP

The synchronization process:
accept enter request from the customer
fetch old balance

store new balance
return new balance to customer

ent er

Updat e_
Bal ance

exi t
<

7/5/01 Copyright G. S. Stiles 2001

Bank Balance: CSP

The synchronization process.

Updat e Bal ance =
ent er ?deposit ->
f et ch?bal ance ->
store! (bal ance + deposit) ->
exit! (bal ance + deposit)->
Updat e Bal ance

7/5/01 Copyright G. S. Stiles 2001

Bank Balance: CSP

Multiple customers interleave —
and do not interact with each other:

Custoners =
Custonerl |||

Custonmer2 |||
...| || CustonerN

7/5/01 Copyright G. S. Stiles 2001

Bank Balance: CSP

"he complete system consists of

the customers running in parallel with
the update process and synchronizing
on the enter and exit events:

System Cust oners

[A]

Updat e Bal ance
where A = {enter, exit}

7/5/01 Copyright G. S. Stiles 2001

Bank Balance: Check the CSP

Correct operation: only one customer
IS In the critical update section at atime;
enforce by requiring the enter and exit events

to dternate:

Safety Spec = enter.x ->
exit.y ->
Saf ety Spec

7/5/01 Copyright G. S. Stiles 2001

Bank Balance: Check the CSP

The CSP CASE tool FDR will verify that
all possible behaviors of the System
satisfy the safety specification.

7/5/01 Copyright G. S. Stiles 2001

Bank Balance: CSP

A more robust version:

add a customer |D and reguire
that successiveent ersandexi t s

have the same I D.

7/5/01 Copyright G. S. Stiles 2001

Message Passing

CSP-style message-passing libraries for Java:

e JCSP (University of Kent at Canterbury)
 CTJ(University of Twente)

... avalable on the web:

e http://ww. cs. ukc. ac. uk/ projects/ ofal/jcsp/
e http://ww. rt.el.utwente.nl/javapp/

7/5/01 Copyright G. S. Stiles 2001

Nagle Mode Enhancement

TCP messages.

» Messages broken into packets for
transmission

« Each packet requires ACK

« Save bandwidth via Nagle mode: ACK only

after every second or third packet — or
timeout (0.2 s)

7/5/01 Copyright G. S. Stiles 2001

Nagle Mode Enhancement

TCP messages

e But: If message Is not a multiple of the
packet size, we have a“small tall” at the

end:

e —awaste of bandwidth, so hold until
another message arrives or timeout.

e Thismay result in asignificant delay!
e Short messages. max 5 per second!

7/5/01 Copyright G. S. Stiles 2001

Nagle Mode Enhancement

The Doupnik solution:
e Transmit small tail immediately if itis
the last of the application’s data;

e otherwise hold thetall for arrival of
more application data.

e Result: significant improvement in
performance!!

7/5/01 Copyright G. S. Stiles 2001

Nagle Mode Enhancement

e The problem:
— Verfy improvement with CSP

* The approach:

— Assume a clock that produces regular tocks.

— Nagle mode will not be able to transmit a short
tall until atimeout (atock) occurs

— Enhanced mode will transmit the short tail prior
to the tock.

7/5/01 Copyright G. S. Stiles 2001

Nagle M ode Enhancement
e Assume 1 packet = 2 “chunks’

* A 3-chunk message: 1 packet plus a

short tall

e A transmission of 2 chunks (one
packet):
send! 2

7/5/01 Copyright G. S. Stiles 2001

Nagle Mode Enhancement

 Theorigina Nagle mode will not
transmit the third chunk until the
200 ms timeout (atock) occurs.

e Thusthe original Nagle mode

cannot transmit the message with no
Intervening tocks.

7/5/01 Copyright G. S. Stiles 2001

Nagle Mode Enhancement

The specification:
Under the enhanced mode, a

message with a short packet must be
able to be transmitted with no
Intervening tocks:

TCP_SPEC =
start -> send?2 -> send?l1 ->
finish -> STOP

7/5/01 Copyright G. S. Stiles 2001

Nagle Mode Enhancement

Verification with FDR:

 FDR verifiesthat the original Nagle
mode cannot meet the spec.

 FDR verifiesthat the enhanced
Nagle mode can transmit the 3-
chunk message with no intervening
tocks.

7/5/01 Copyright G. S. Stiles 2001

Conclusions

CSP provides an intuitive method
for describing synchronization and
communication protocols.

FDR supplies the tools to verify the
correctness of the protocols.

Java + CSP libraries provides the
means for Implementing and testing
the protocols.

7/5/01 Copyright G. S. Stiles 2001

The fast track to success:

e Design with CSP
e Verify with FDR

e Implement in Javawith little
pan!

o Studentsreadily handle systems
with up to 60 or so concurrent
PrOCesses.

7/5/01 Copyright G. S. Stiles 2001

