
5 July 2001

Copyright G. S. Stiles 2001 1

July 5, 2001 Copyright G. S. Stiles 2001 1

Concurrent Systems, CSP, and
FDR

Dyke Stiles & Don Rice

dyke.stiles@ece.usu.edu
http://www.engineering.usu.edu/ece/

Utah State University

June 2001

July 5, 2001 Copyright G. S. Stiles 2001 2

Why Concurrent Systems
Design??

• Many systems are naturally concurrent!!

• Better engineering:
– Modularity

– Simplicity

• Reliability & Fault Tolerance

• Speed – on multiple processors

5 July 2001

Copyright G. S. Stiles 2001 2

July 5, 2001 Copyright G. S. Stiles 2001 3

What Are Concurrent
Systems?

Any system where tasks run concurrently
– time-sliced on one processor

– and/or on multiple processors

July 5, 2001 Copyright G. S. Stiles 2001 4

Concurrent Systems

Time-sliced examples:
– Multiple independent jobs

• Operating system
– comms, I/O, user management

• Multiple users’ jobs

– Multithreading within one job
• C++

• Java

5 July 2001

Copyright G. S. Stiles 2001 3

July 5, 2001 Copyright G. S. Stiles 2001 5

Concurrent Systems

Multiprocessor examples:
– Distributed memory (message-passing)

systems (e.g, Intel, NCube)

– Shared memory systems (e.g., Sun)

July 5, 2001 Copyright G. S. Stiles 2001 6

Concurrent Systems

Example applications
Numerical computation on multiprocessors

• typically regular communication patterns

• relatively easy to handle

5 July 2001

Copyright G. S. Stiles 2001 4

July 5, 2001 Copyright G. S. Stiles 2001 7

Concurrent Systems

Example applications
Real-time systems on multiple processors

• e.g., flight control, communications routers

• irregular communication, often in closed loops

• difficult to get correct

• may be prone to deadlock and livelock

July 5, 2001 Copyright G. S. Stiles 2001 8

Concurrent Systems

Example applications
System routines on one multiprocessor node

• Manage multiple user tasks

• Manage communications
– Route messages between tasks on node

– Route messages to tasks on other nodes

– Manage multiple links to other nodes

– Manage I/O, interrupts, etc.

5 July 2001

Copyright G. S. Stiles 2001 5

July 5, 2001 Copyright G. S. Stiles 2001 9

Concurrent Systems

Example applications
System routines on one multiprocessor node

Router

Task Manager

U0 U5

July 5, 2001 Copyright G. S. Stiles 2001 10

Concurrent Systems

Example: complete routing system

5 July 2001

Copyright G. S. Stiles 2001 6

July 5, 2001 Copyright G. S. Stiles 2001 11

What Is “Difficult” About
Concurrent Systems?

• Correctness

• Deadlock

• Livelock

July 5, 2001 Copyright G. S. Stiles 2001 12

Why is Correctness an Issue?

• Multiple processes execute their
instructions more or less at the same
time.

• The actual operations may interleave in
time in a great number of ways:
– For n processes with m instructions, there

are (nm)!/(m!)^n interleavings.
– Two processes of 10 instructions each

have 184,756 interleavings!!

5 July 2001

Copyright G. S. Stiles 2001 7

July 5, 2001 Copyright G. S. Stiles 2001 13

Correctness

Example: the bank balance problem
ATM:

fetch balance
balance = balance – $100
store balance

Payroll Computer:
fetch balance
balance = balance + $1000
store balance

July 5, 2001 Copyright G. S. Stiles 2001 14

Bank Balance
Original balance = $1000

Interleaving 1:
ATM Payroll Computer

t1 fetch $1000
t2 balance = $1000 - $100
t3 store $900
t4 fetch $900
t5 balance = $900 + $1000
t6 store $1900

Final balance = $1900: Correct!

5 July 2001

Copyright G. S. Stiles 2001 8

July 5, 2001 Copyright G. S. Stiles 2001 15

Bank Balance
Original balance = $1000

Interleaving 2:
ATM Payroll Computer

t1 fetch $1000
t2 fetch $1000
t3 balance = $1000 + $1000
t4 store $2000
t5 balance = $1000 - $100
t6 store $900

Final balance = $900: WRONG!

July 5, 2001 Copyright G. S. Stiles 2001 16

Bank Balance

Only 2 of the twenty possible
interleavings are correct!!

Concurrent systems must have some
means of guaranteeing that operations
in different processes are executed in
the proper order.

5 July 2001

Copyright G. S. Stiles 2001 9

July 5, 2001 Copyright G. S. Stiles 2001 17

Deadlock

All processes stopped:
– often because each is waiting for an action of

another process

– processes cannot proceed until action occurs

July 5, 2001 Copyright G. S. Stiles 2001 18

Deadlock

Example: Shared Resource
Two processes wish to print disk files.
Neither can proceed until it controls both
the printer and the disk; one requests the
disk first, the other the printer first:

Proc A Proc B
t1 acquire disk

t2 acquire printer

t3 try to acquire printer DEADLOCK!!

5 July 2001

Copyright G. S. Stiles 2001 10

July 5, 2001 Copyright G. S. Stiles 2001 19

Livelock

• Program performs an infinite unbroken
sequence of internal actions

• Refuses (unable) to interact with its
environment.

• Outward appearance is similar to deadlock -
but the internal causes differ significantly.

• Example: two processes get stuck sending
error messages to each other.

July 5, 2001 Copyright G. S. Stiles 2001 20

Concurrent Designs Requires:

• Means to guarantee correct ordering of
operations

• Models to avoid and tools to detect
– Deadlock

– Livelock

5 July 2001

Copyright G. S. Stiles 2001 11

July 5, 2001 Copyright G. S. Stiles 2001 21

CSP: A Solution

Communicating Sequential Processes (CSP)
– Processes interact only via explicit blocking

events.
• Blocking: neither process proceeds until both processes

have reached the event.

– There is absolutely no use of shared variables
outside of events.

– Can be done - with care – from semaphores, wait,
etc.

July 5, 2001 Copyright G. S. Stiles 2001 22

CSP

A process algebra –

Provides formal (mathematical) means
and CASE tools for

• Describing systems of interacting concurrent
processes

• Proving properties of concurrent systems
– Agreement with specifications

– Deadlock freedom

– Divergence freedom

5 July 2001

Copyright G. S. Stiles 2001 12

July 5, 2001 Copyright G. S. Stiles 2001 23

CSP Design Philosophy

• Complex applications are generally far easier
to design as systems of
– many small, simple processes
– that interact only via explicit events.

• Unconstrained use of shared memory can
lead to designs that
– are extremely difficult to implement
– are not verifiable

July 5, 2001 Copyright G. S. Stiles 2001 24

CSP Design Example

Virtual Channel System
– Two processes must be able to send

identifiable messages over a single wire.
– Solution: append channel identifier to

messages, and wait for ack to control flow.

data.i

ack.i

P0

P1

router

5 July 2001

Copyright G. S. Stiles 2001 13

July 5, 2001 Copyright G. S. Stiles 2001 25

CSP Design Example

Router: single process design
– Software state machine

– State variables are the message states:
• 0: waiting to input

• 1: waiting to send downstream

• 2: waiting for ack

– Result: 3 x 3 = 9 state case statement

July 5, 2001 Copyright G. S. Stiles 2001 26

CSP Design Example

Router: single process design
Example case clause:

(S0 = input0, S1 = input1):
Read(channel0, channel1)

If (channel0)

write data.0

S0 = send0;

Else

write data.1

S1 = send1;

5 July 2001

Copyright G. S. Stiles 2001 14

July 5, 2001 Copyright G. S. Stiles 2001 27

CSP Design Example

Router: single process design
– Nine states – not too bad, but complex enough to

require care in the implementation.

– But: if we add another input, it goes to 27 states,
and a fourth gives us 81 states!!!

– What are your odds of getting this right the first
time?

– Would debugging 81 states be much fun???

July 5, 2001 Copyright G. S. Stiles 2001 28

CSP Design Example

Router: multiple process design
– One process to monitor each input and

wait for the ack (these are identical)

– One multiplexer process to send the inputs
downstream

– One demultiplexer process to accept and
distribute the acks

5 July 2001

Copyright G. S. Stiles 2001 15

July 5, 2001 Copyright G. S. Stiles 2001 29

CSP Design Example

Router: multiple process design: block
diagram

Input 0

Input 1

Mux

DeMux

down

up

July 5, 2001 Copyright G. S. Stiles 2001 30

CSP Design Example

Router: multiple process design
Input process:

While (true)

read input;

write input to Mux;

wait for ack from DeMux;

5 July 2001

Copyright G. S. Stiles 2001 16

July 5, 2001 Copyright G. S. Stiles 2001 31

CSP Design Example

Router: multiple process design
Mux process

While (true)

read (input0, input1)

if (input0) write data.0

else write data.1;

July 5, 2001 Copyright G. S. Stiles 2001 32

CSP Design Example

Router: multiple process design
DeMux process

While (true)

read ack;

if (ack == 0) write ack0

else write ack1;

5 July 2001

Copyright G. S. Stiles 2001 17

July 5, 2001 Copyright G. S. Stiles 2001 33

CSP Design Example

• Router:multiple process design;
Summary
– Three processes – 4 lines each!!
– Add another input?

• Add one input process
• Mux modified to look at 3 inputs
• Demux modified to handle 3 different acks

• Which implementation would you rather
build?

July 5, 2001 Copyright G. S. Stiles 2001 34

Formal Methods

• Formal methods: mathematical means
for designing and proving properties of
systems.

• Such techniques have been in use for
decades in
– Analog electronics

• Filter design: passband, roll-off, etc

• Controls: response time, phase characteristics

5 July 2001

Copyright G. S. Stiles 2001 18

July 5, 2001 Copyright G. S. Stiles 2001 35

Formal Methods

Digital design
• Logic minimization

• Logical description to gate design

• Formal language description of algorithm to
VLSI masks

(e.g., floating-point processor design)

July 5, 2001 Copyright G. S. Stiles 2001 36

Formal Methods

Two methods of formal design:
– 1. Derive a design from the specifications.

– 2. Assume a design and prove that it
meets the specifications.

5 July 2001

Copyright G. S. Stiles 2001 19

July 5, 2001 Copyright G. S. Stiles 2001 37

CSP

• CSP: deals only with interactions
between processes.

• CSP: does not deal (easily) with the
internal behavior of processes.

• Hence other software engineering
techniques must be used to develop &
verify the internal workings of
processes.

July 5, 2001 Copyright G. S. Stiles 2001 38

CSP

The two components of CSP systems:
– Processes: indicated by upper-case: P, Q,

R, …

– Events: indicated by lower-case: a, b, c, …

5 July 2001

Copyright G. S. Stiles 2001 20

July 5, 2001 Copyright G. S. Stiles 2001 39

CSP

Example: a process P engages in events
a, b, c, a, and then STOPs:
P = a → b → c → a → STOP

“→” is the prefix operator;

STOP is a special process that never
engages in any event.

July 5, 2001 Copyright G. S. Stiles 2001 40

CSP Example

A practical example: a simple pop
machine accepts a coin, returns a can
of pop, and then repeats:
– PM = coin → pop → PM
– Note the recursive definition - which is

acceptable; substituting the rhs for the
occurrence of PM in the rhs, we get

– PM = coin → pop → coin → pop → PM
– (RT processes are often non-terminating.)

5 July 2001

Copyright G. S. Stiles 2001 21

July 5, 2001 Copyright G. S. Stiles 2001 41

CSP Example

The router:

toMux0

ack1

ch0 In0

ch1 In1

Mux

DeMux

ack0

down

up

toMux1

July 5, 2001 Copyright G. S. Stiles 2001 42

The router processes: Input

In0 = ch0?x → toMux0!x →
ack0 → In0

toMux0

ack0
ch0 In0

5 July 2001

Copyright G. S. Stiles 2001 22

July 5, 2001 Copyright G. S. Stiles 2001 43

The router processes: Mux

Mux = toMux0?x → down!x.0 → Mux

�

toMux1?x → down!x.1 → Mux

down

ch0

ch1

Mux

July 5, 2001 Copyright G. S. Stiles 2001 44

The router processes: DeMux

DeMux = up?x →
(ack0 ex == 0u ack1)
→ DeMux

up

ack0

ack1

DeMux

5 July 2001

Copyright G. S. Stiles 2001 23

July 5, 2001 Copyright G. S. Stiles 2001 45

CSP

Example: the process graph of a data
acquisition system (NB: no arrows...):

DataSampler

DataAq

DataStore

data_ready

get_data send_data

July 5, 2001 Copyright G. S. Stiles 2001 46

CSP

• DataAq: waits until it is notified by the
sampler that data is ready, then gets and
transforms the data, sends it on to be stored,
and repeats:
– DataAq = data_ready → get_data →

send_data → DataAq
• Note that the transform is an internal process

and is not visible; data_ready, get_data, and
send_data are events engaged in with other
processes.

5 July 2001

Copyright G. S. Stiles 2001 24

July 5, 2001 Copyright G. S. Stiles 2001 47

CSP

• The data sampling process would
engage in the events data_ready and
get_data:
DataSampler = data_ready → get_data →

DataSampler

• Data store engages only in send_data:
DataStore = send_data → DataStore

July 5, 2001 Copyright G. S. Stiles 2001 48

CSP

• We thus have three processes, each of which
has an alphabet of events in which it can
engage:
– DataSampler: ASa = {data_ready,

get_data}
– DataAq: ADA = {data_ready, get_data,

send_data}
– DataStore: ASt = {send_data}

• The entire alphabet of the composite process
is denoted by Σ .

5 July 2001

Copyright G. S. Stiles 2001 25

July 5, 2001 Copyright G. S. Stiles 2001 49

CSP

• The entire data acquisition system would be
indicated by the alphabetized parallel
composition of the three processes:
DAS = DataSample ASa7ADA DataAq ADA7ASt

DataStore

• Two processes running in alphabetized
parallel with each other must agree
(synchronize) on events which are common
to their alphabets.

July 5, 2001 Copyright G. S. Stiles 2001 50

CSP Details

Traces
– The traces of a process is the set of all

possible sequences of events in which it
can engage.

– The traces of Data_Store are simple:

• {<>, <send_data>n, 0 ≤ n ≤ ∞}

• <> is the empty trace.

5 July 2001

Copyright G. S. Stiles 2001 26

July 5, 2001 Copyright G. S. Stiles 2001 51

CSP Details

Traces
DataAq can have engaged in no events, or
any combination of the events data_ready,
get_data, and send_data in the proper
order:

July 5, 2001 Copyright G. S. Stiles 2001 52

CSP Details

Traces of DataAq:
traces(DataAq) = {<>, <data_ready>,

<data_ready, get_data>, <data_ready,
get_data, send_data>n, <data_ready,
get_data, send_data>n ^ <data_ready>,
<data_ready, get_data, send_data>n ^
<data_ready, get_data>, 0 ≤ n ≤ ∞}

5 July 2001

Copyright G. S. Stiles 2001 27

July 5, 2001 Copyright G. S. Stiles 2001 53

CSP Details

• Traces specify formally what a process can
do - if it does anything at all.

• This is a safety property: the trace
specification should not allow any
unacceptable operations (e.g., we would not
want to allow two stores without an
intervening new sample; thus <...send_data,
send_data...> is ruled out.

July 5, 2001 Copyright G. S. Stiles 2001 54

CSP Details

• Traces do not force a process do
anything.

• We force action by limiting what a
process can refuse to do. This is a
liveness property.

5 July 2001

Copyright G. S. Stiles 2001 28

July 5, 2001 Copyright G. S. Stiles 2001 55

CSP Details

• refusal set: a set of events which a
process can refuse to engage in
regardless of how long they are offered.

• E.g., the refusal set of DataAq after it
has engaged in data_ready is
{data_ready, send_data}.

July 5, 2001 Copyright G. S. Stiles 2001 56

CSP Details

Refusals can be shown nicely on the
transition diagram of DataAq:

data_ready get_data

send_data

{get_data, send_data}

{data_ready, send_data}

{data_ready, get_data}

5 July 2001

Copyright G. S. Stiles 2001 29

July 5, 2001 Copyright G. S. Stiles 2001 57

CSP Details

• A failure is a pair (s, X), where s is a
trace and X is the set of events which
are refused after that trace.

• We force a process to do the right
things by specifying the acceptable
failures - thus limiting the failures it can
exhibit.

July 5, 2001 Copyright G. S. Stiles 2001 58

CSP Details

Failures
E.g., DataAq cannot fail to accept a new
data_ready event after a complete cycle;
its failures cannot contain (<data_ready,
get_data, send_data>n, {data_ready}).

5 July 2001

Copyright G. S. Stiles 2001 30

July 5, 2001 Copyright G. S. Stiles 2001 59

CSP Details

• traces:
specify what can be done

• failures:
specify allowed failures

• Together, these guarantee that the
appropriate things will be done.

• We have only to prevent deadlock and
livelock...

July 5, 2001 Copyright G. S. Stiles 2001 60

CSP Details

Deadlock freedom:
A system is deadlock free if, after any

possible trace, it cannot refuse the entire
alphabet Σ :

∀ s . (s, Σ) ∉ failures(DAS)

5 July 2001

Copyright G. S. Stiles 2001 31

July 5, 2001 Copyright G. S. Stiles 2001 61

CSP Details

Livelock (divergence) freedom:
– divergences of a process:

the set of traces after which the process can
enter an unending series of internal actions.

– A system is divergence free if there are no
traces after which it can diverge:

divergences(DAS) = {}

July 5, 2001 Copyright G. S. Stiles 2001 62

CSP Details

• A complete specification:
– Acceptable traces

– Acceptable failures

– Deadlock freedom

– Divergence freedom

• These properties can be checked by
rigorous CASE tools – from FSE Ltd.

5 July 2001

Copyright G. S. Stiles 2001 32

July 5, 2001 Copyright G. S. Stiles 2001 63

CSP Details

Refinement
– A specification is often a process that

exhibits all acceptable implementations -
which may be overkill, but easy to state.

– Implementation Q refines specification P
(P m Q) if:

Q satisfies the properties of P:
– the traces of Q are included in the traces of P;

– the failures of Q are included in the failures of P.

July 5, 2001 Copyright G. S. Stiles 2001 64

CSP Details

Refinement of a design problem:
– Initial specification:

• very general (often highly parallel)

• correctness easy to verify.

– CASE tools:
verify that a particular implementation (whose
correctness may not be obvious) properly
refines the original specification.

5 July 2001

Copyright G. S. Stiles 2001 33

July 5, 2001 Copyright G. S. Stiles 2001 65

CSP Details

Algebraic manipulations
– Objects and operations within CSP form a

rigorous algebra.

– Algebraic manipulations:
• demonstrate the equivalence of processes

• transform processes into ones that may be
implemented more efficiently.

July 5, 2001 Copyright G. S. Stiles 2001 66

CSP Details

Algebraic manipulations: simple laws
– Alphabetized parallel composition obeys

commutative laws
P A7B Q = Q B7A P

– and associative laws
(P A7B Q) B7C R = P A7B (Q B7C R)

– and many, many more...

5 July 2001

Copyright G. S. Stiles 2001 34

July 5, 2001 Copyright G. S. Stiles 2001 67

CSP Details

Algebraic manipulations: step laws
Step laws:

convert parallel implementations into equivalent
sequential (single-thread) implementations:

July 5, 2001 Copyright G. S. Stiles 2001 68

CSP Details

Step law example:
Assume P = ?x:A → P’ and Q = y:B → Q’

P A7B Q = ?x:(A ∪ B) → P’ A7B Q’

e x ∈ (A ∩ B) u
P’ A7B Q

e x ∈ A u

P A7B Q‘

Repeated application results in a sequence of
events.

5 July 2001

Copyright G. S. Stiles 2001 35

July 5, 2001 Copyright G. S. Stiles 2001 69

CSP Details

Sequentialization
– The parallel composition of the DataAq and

DataStore can be sequentialized - which may be
more efficient on a single processor:

DataAq ADA7ASt DataStore = DaDst = data_ready →
get_data → send_data → DaDst

– The CASE tools will verify that the sequential
version refines the concurrent version.

July 5, 2001 Copyright G. S. Stiles 2001 70

CSP Tools

ProBE
Process Behaviour Explorer

• Allows manual stepping through a CSP
description

• Shows events acceptable at each state

• Records traces

• Allows manual check against specifications

5 July 2001

Copyright G. S. Stiles 2001 36

July 5, 2001 Copyright G. S. Stiles 2001 71

CSP Tools

FDR (a model checker)
Failures-Divergences-Refinement

Mathematically tests for:
– Refinement of one process against another

» Traces

» Failures

» Divergences

– Deadlock freedom

– Divergence freedom

July 5, 2001 Copyright G. S. Stiles 2001 72

CSP Compatibility

• “My work group uses the (Yourdon,
Booch, UML, PowerBuilder, Delphi…
software development system); can I
still use CSP?”

• Certainly – CSP can be used wherever
you design with processes that interact
only via CSP-style explicit events.

5 July 2001

Copyright G. S. Stiles 2001 37

July 5, 2001 Copyright G. S. Stiles 2001 73

CSP Compatibility

“CSP seems to be based on message passing;

Can I use it with locks, critical sections,

semaphores, mutexes and/or monitors???”

Absolutely! As long as your processes interact

only via explicit locks, mutexes, etc., CSP can

describe them – and prove them.

July 5, 2001 Copyright G. S. Stiles 2001 74

CSP Mutex

Modeling of shared-memory primitives

Mutex:
claim mutex1;
modify shared variable;

release mutex1;

5 July 2001

Copyright G. S. Stiles 2001 38

July 5, 2001 Copyright G. S. Stiles 2001 75

CSP Mutex

A CSP mutex process:

Mutex1 =
claim → release → Mutex1

The process will not allow a second claim
until a prior claim has been followed by a
release.

July 5, 2001 Copyright G. S. Stiles 2001 76

CSP Mutex

Weaknesses:
– Compiler does not require use of mutex to access

shared variables.

– A process may neglect to release the mutex, thus
holding up further (proper) accesses.

5 July 2001

Copyright G. S. Stiles 2001 39

July 5, 2001 Copyright G. S. Stiles 2001 77

CSP Mutex

A more robust version that allows only the
process making the claim to complete the
release:

RMutex =

claim?ProcID→ release!ProcID

→ Rmutex

July 5, 2001 Copyright G. S. Stiles 2001 78

CSP Mutex

Use of the robust mutex:

Proc 29:
claim!29;

modify shared variable;

release?29;

5 July 2001

Copyright G. S. Stiles 2001 40

July 5, 2001 Copyright G. S. Stiles 2001 79

CSP Mutex

The way it should be done: the shared
variable is modifiable only by a single
process (which allows a read as well):

Robust(x) =
ModifyX!y → Robust(x + y)

�

readX?x → Robust(x)

July 5, 2001 Copyright G. S. Stiles 2001 80

Semaphores

Definitions

(〈x;〉: operation x is atomic)

Claim semaphore s:

P(s): 〈await (s > 0) s = s – 1;〉

Release semaphore s:

V(s): 〈s = s + 1;〉

5 July 2001

Copyright G. S. Stiles 2001 41

July 5, 2001 Copyright G. S. Stiles 2001 81

Semaphores

A semaphore process (initialized to s = 1):

SemA = SemA1(1)

SemA1(s) =

(pA → SemA1(s-1))e s > 0 u STOP

�

(vA → SemA1(s + 1)

July 5, 2001 Copyright G. S. Stiles 2001 82

Summary 1

Thirty+ years of experience shows that
– Complex applications are generally far

easier to design as systems of
• many (2 – 2000) small, simple processes

• that interact only via explicit events.

– Careless use of shared memory can lead
to designs that

• are extremely difficult to implement

• are not verifiable

• are wrong!

5 July 2001

Copyright G. S. Stiles 2001 42

July 5, 2001 Copyright G. S. Stiles 2001 83

Summary 2

CSP + Tools:
– Clean, simple specification of concurrent

systems
– Rigorous verification against specifications
– Proof of deadlock and livelock freedom
– Verifiable conversion between concurrent

and single-threaded implementations
– Works with any process-oriented

development system.

July 5, 2001 Copyright G. S. Stiles 2001 84

CSP Applications

• Real-time & embedded systems

• Communications management

• Communications security protocols

• Digital design – from gate-level through
FPGAs to multiple systems on a chip

• Parallel numerical applications

• Algorithm development

5 July 2001

Copyright G. S. Stiles 2001 43

July 5, 2001 Copyright G. S. Stiles 2001 85

Example:
Ring Network Router

Don Rice, Bin Cai, Pichitpong Soontornpipit

ECE 6750 Class Project

http://www.engineering.usu.edu/ece/

Utah State University

July 5, 2001 Copyright G. S. Stiles 2001 86

Ring Network Description

• Three nodes connected in a ring topology

• Two inputs and two outputs per node

• One transmit/receive pair between nodes

• Input must be acknowledged by destination
before additional input is accepted

• Error-free network: packets are not lost,
damaged, or duplicated

5 July 2001

Copyright G. S. Stiles 2001 44

July 5, 2001 Copyright G. S. Stiles 2001 87

Three Two-Input Node Ring

Downstream2

Upstream2
upin2

upin3

downout2

downout3

data2_2
ack2_2

Node 2

Downstream3

Upstream3
upin4

upin5

downout4

downout5

data3_3
ack3_3

Node 3

Downstream1

Upstream1
upin0

upin1

downout0

downout1

downtoup1

data1_1
ack1_1

Node 1

uptodown1

downtoup0

uptodown0

downtoup2

uptodown2

downtoup0

uptodown0

This configuration

sometimes deadlocks!

July 5, 2001 Copyright G. S. Stiles 2001 88

Design Procedure

• Began with two-node topologies in CSP

• Used ProBE and FDR to explore designs
– Identified deadlock scenarios

– Verified deadlock-free design

• Implemented application with Java CTJ

• Ported to JCSP applet

5 July 2001

Copyright G. S. Stiles 2001 45

July 5, 2001 Copyright G. S. Stiles 2001 89

Two-Input/Two-Output Node

• Inputs upin0, upin1
accept data value
and destination
ID [0,5]

• Outputs downout0,
downout1 produce
data value, source ID [0,5]

• Data flows on solid lines (e.g., uptodown
bus,) acknowledgments flow on dashed
lines (e.g., downtoup bus)

Upstream1
upin0

upin1

downout0

downout1

downtoup1

data1_1
ack1_1

Node 1

uptodown1

downtoup0

uptodown0
Downstream1

July 5, 2001 Copyright G. S. Stiles 2001 90

Input Handler: “Upstream”

upin0

downtoup1

data1_1
ack1_1

uptodown1

UpHandler11

Mux1

upin1
UpCntrl1

(from output handler)

(to next node)

UpHandler10

5 July 2001

Copyright G. S. Stiles 2001 46

July 5, 2001 Copyright G. S. Stiles 2001 91

Sample Code from “UpHandler”

public void run()
{

intArray packet = null; // packet from test source class
ChanIO UpH = new ChanIO("UpHandler"+Identity); // IO wrapper
int ack = 0; // acknowledgment from destination
boolean Running = true; //allow for external control someday

// Repeatedly read data and pass it on:
while(Running)
{

packet = UpH.Read(input, " d.d"); // Read destination, data from test source
UpH.Write(output, packet, " d.d"); // Write destination, data to Mux

ack = UpH.Read(ackin, " ack"); // Wait for ack from UpCntrl

} // End while.

} // End run

Read() and Write() methods were wrappers for CTJ
try/catch clauses; wrappers were converted to JCSP with
little impact on router functions.

Java processes developed from CSP are typically very simple.

July 5, 2001 Copyright G. S. Stiles 2001 92

Output Handler: “Downstream”

uptodown0 DownHandler10

(from
previous

node)

(to input handler)

downout0

downout1

data1_1 ack1_1

downtoup0

DownHandler11

DownMux1Bus(implicit multiplexing using
Any2OneChannel)

DeMux1

5 July 2001

Copyright G. S. Stiles 2001 47

July 5, 2001 Copyright G. S. Stiles 2001 93

Deadlock Prevention
• Used FDR to

evaluate alternatives

• A single buffer
added to the system
was necessary and
sufficient to prevent
deadlock

• Added “passthru”
buffer to Node 1 in
Java version

Downstream1

Upstream1
upin0

upin1

downout0

downout1

downtoup1

updatachan
upackchan

Node 1

uptodown1

downtoup0

uptodown0

PassthruBuf

ack1_1
data1_1

July 5, 2001 Copyright G. S. Stiles 2001 94

Conclusions

• Design in CSP with FDR testing and
verification provides confidence not possible
with Java trial-and-error testing

• Model optimization was critical to operate
FDR in student lab environment

• Conversion from CSP to Java CTJ or JCSP
is largely cut-and-paste exercise once basic
examples are provided…
(designers had little prior Java experience)

5 July 2001

Copyright G. S. Stiles 2001 48

July 5, 2001 Copyright G. S. Stiles 2001 95

Related USU Projects

• Creation of Java code directly from CSP
E.g., the simple router

• Automatic conversion of CSP from
parallel to sequential

• Compilation of Java to VHDL/FPGA
• Analysis of autonomous vehicle

software
• Analysis of internet protocols

July 5, 2001 Copyright G. S. Stiles 2001 96

Courses:

• ECE 5740
– Concurrent Programming (under Win32)

– Fall

• ECE 6750
– Concurrent Systems Engineering I (CSP I; Java)

– Spring

• ECE 7710
– Concurrent Systems Engineering II (CSP II; Java, C)

– Add real-time specifications

– Alternate Falls

