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Why Concurrent Systems 
Design??

• Many systems are naturally concurrent!!

• Better engineering:
– Modularity

– Simplicity

• Reliability & Fault Tolerance

• Speed – on multiple processors
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What Are Concurrent 
Systems?

Any system where tasks run concurrently
– time-sliced on one processor

– and/or on multiple processors
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Concurrent Systems

Time-sliced examples:
– Multiple independent jobs

• Operating system
– comms, I/O, user management

• Multiple users’ jobs

– Multithreading within one job
• C++

• Java
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Concurrent Systems

Multiprocessor examples:
– Distributed memory (message-passing) 

systems (e.g, Intel, NCube)

– Shared memory systems (e.g., Sun)
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Concurrent Systems

Example applications
Numerical computation on multiprocessors

• typically regular communication patterns

• relatively easy to handle
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Concurrent Systems

Example applications
Real-time systems on multiple processors

• e.g., flight control, communications routers

• irregular communication, often in closed loops

• difficult to get correct

• may be prone to deadlock and livelock 
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Concurrent Systems

Example applications
System routines on one multiprocessor node

• Manage multiple user tasks

• Manage communications
– Route messages between tasks on node

– Route messages to tasks on other nodes

– Manage multiple links to other nodes

– Manage I/O, interrupts, etc.
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Concurrent Systems

Example applications
System routines on one multiprocessor node

Router

Task Manager

U0 U5
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Concurrent Systems

Example: complete routing system
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What Is “Difficult” About 
Concurrent Systems?

• Correctness

• Deadlock

• Livelock
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Why is Correctness an Issue?

• Multiple processes execute their 
instructions more or less at the same 
time.

• The actual operations may interleave in 
time in a great number of ways:
– For n processes with m instructions, there 

are (nm)!/(m!)^n interleavings.
– Two processes of 10 instructions each 

have 184,756 interleavings!!
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Correctness

Example: the bank balance problem
ATM:

fetch balance
balance = balance – $100
store balance

Payroll Computer:
fetch balance
balance = balance + $1000
store balance
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Bank Balance
Original balance = $1000

Interleaving 1:
ATM Payroll Computer

t1 fetch $1000
t2 balance = $1000 - $100
t3 store $900
t4 fetch $900
t5 balance = $900 + $1000
t6 store $1900

Final balance = $1900: Correct! 
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Bank Balance
Original balance = $1000

Interleaving 2:
ATM Payroll Computer

t1 fetch $1000
t2 fetch $1000
t3 balance = $1000 + $1000
t4 store $2000
t5 balance = $1000 - $100
t6 store $900

Final balance = $900: WRONG! 
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Bank Balance

Only 2 of the twenty possible 
interleavings are correct!!

Concurrent systems must have some 
means of guaranteeing that operations 
in different processes are executed in 
the proper order. 
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Deadlock

All processes stopped:
– often because each is waiting for an action of 

another process

– processes cannot proceed until action occurs
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Deadlock

Example: Shared Resource
Two processes wish to print disk files. 
Neither can proceed until it controls both 
the printer and the disk; one requests the 
disk first, the other the printer first:

Proc A Proc B
t1 acquire disk

t2 acquire printer

t3 try to acquire printer   DEADLOCK!!
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Livelock

• Program performs an infinite unbroken 
sequence of internal actions

• Refuses (unable) to interact with its 
environment.

• Outward appearance is similar to deadlock -
but the internal causes differ significantly.

• Example: two processes get stuck sending 
error messages to each other.   
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Concurrent Designs Requires:

• Means to guarantee correct ordering of 
operations

• Models to avoid and tools to detect
– Deadlock

– Livelock
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CSP: A Solution

Communicating Sequential Processes (CSP)
– Processes interact only via explicit blocking 

events.
• Blocking: neither process proceeds until both processes 

have reached the event.

– There is absolutely no use of shared variables 
outside of events.

– Can be done - with care – from semaphores, wait, 
etc.
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CSP

A process algebra –

Provides formal (mathematical) means 
and CASE tools for

• Describing systems of interacting concurrent 
processes

• Proving properties of concurrent systems
– Agreement with specifications

– Deadlock freedom

– Divergence freedom
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CSP Design Philosophy

• Complex applications are generally far easier 
to design as systems of 
– many small, simple processes 
– that interact only via explicit events.

• Unconstrained use of shared memory can 
lead to designs that 
– are extremely difficult to implement
– are not verifiable
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CSP Design Example

Virtual Channel System
– Two processes must be able to send 

identifiable messages over a single wire.
– Solution: append channel identifier to 

messages, and wait for ack to control flow.

data.i

ack.i

P0

P1

router
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CSP Design Example

Router: single process design
– Software state machine

– State variables are the message states:
• 0: waiting to input

• 1: waiting to send downstream

• 2: waiting for ack

– Result: 3 x 3 = 9 state case statement
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CSP Design Example

Router: single process design
Example case clause:

(S0 = input0, S1 = input1):
Read(channel0, channel1)

If (channel0) 

write data.0

S0 = send0;

Else

write data.1

S1 = send1;
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CSP Design Example

Router: single process design
– Nine states – not too bad, but complex enough to 

require care in the implementation.

– But: if we add another input, it goes to 27 states, 
and a fourth gives us 81 states!!!

– What are your odds of getting this right the first 
time?

– Would debugging 81 states be much fun???
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CSP Design Example

Router: multiple process design
– One process to monitor each input and 

wait for the ack (these are identical)

– One multiplexer process to send the inputs 
downstream

– One demultiplexer process to accept and 
distribute the acks
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CSP Design Example

Router: multiple process design: block 
diagram

Input 0

Input 1

Mux

DeMux

down

up
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CSP Design Example

Router: multiple process design
Input process:

While (true)

read input;

write input to Mux;

wait for ack from DeMux;
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CSP Design Example

Router: multiple process design
Mux process

While (true)

read (input0, input1)

if (input0) write data.0

else write data.1;
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CSP Design Example

Router: multiple process design
DeMux process

While (true)

read ack;

if (ack == 0) write ack0

else write ack1;
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CSP Design Example

• Router:multiple process design; 
Summary
– Three processes – 4 lines each!!
– Add another input?

• Add one input process
• Mux modified to look at 3 inputs
• Demux modified to handle 3 different acks

• Which implementation would you rather 
build?
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Formal Methods

• Formal methods: mathematical means 
for designing and proving properties of 
systems.

• Such techniques have been in use for 
decades in 
– Analog electronics

• Filter design: passband, roll-off, etc

• Controls: response time, phase characteristics
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Formal Methods

Digital design
• Logic minimization

• Logical description to gate design

• Formal language description of algorithm to 
VLSI masks

(e.g., floating-point processor design)
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Formal Methods

Two methods of formal design:
– 1. Derive a design from the specifications.

– 2. Assume a design and prove that it 
meets the specifications.
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CSP

• CSP: deals only with interactions 
between processes.

• CSP: does not deal (easily) with the 
internal behavior of processes.

• Hence other software engineering 
techniques must be used to develop & 
verify the internal workings of 
processes.
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CSP

The two components of CSP systems:
– Processes: indicated by upper-case: P, Q,

R, …

– Events: indicated by lower-case: a, b, c, …
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CSP

Example: a process P engages in events 
a, b, c, a, and then STOPs:
P = a → b → c → a → STOP

“→” is the prefix operator; 

STOP is a special process that never 
engages in any event.
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CSP Example

A practical example: a simple pop 
machine accepts a coin, returns a can 
of pop, and then repeats:
– PM = coin → pop → PM
– Note the recursive definition - which is 

acceptable; substituting the rhs for the 
occurrence of PM in the rhs, we get

– PM = coin → pop → coin → pop → PM
– (RT processes are often non-terminating.)
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CSP Example

The router:

toMux0

ack1

ch0 In0

ch1 In1

Mux

DeMux

ack0

down

up

toMux1
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The router processes: Input

In0 = ch0?x → toMux0!x →
ack0 → In0 

toMux0

ack0
ch0 In0
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The router processes: Mux

Mux = toMux0?x → down!x.0 → Mux

toMux1?x → down!x.1 → Mux

down

ch0

ch1

Mux
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The router processes: DeMux

DeMux = up?x →
(ack0 ex == 0u ack1) 
→ DeMux

up

ack0

ack1

DeMux
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CSP

Example: the  process graph of a data 
acquisition system (NB: no arrows...):

DataSampler

DataAq

DataStore

data_ready

get_data send_data
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CSP

• DataAq: waits until it is notified by the 
sampler that data is ready, then gets and 
transforms the data, sends it on to be stored, 
and repeats: 
– DataAq = data_ready → get_data →

send_data → DataAq
• Note that the transform is an internal process 

and is not visible; data_ready, get_data, and
send_data are events engaged in with other 
processes.
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CSP

• The data sampling process would 
engage in the events data_ready and 
get_data:
DataSampler = data_ready → get_data →

DataSampler

• Data store engages only in send_data:
DataStore = send_data → DataStore
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CSP

• We thus have three processes, each of which 
has an alphabet of events in which it can 
engage:
– DataSampler: ASa = {data_ready, 

get_data}
– DataAq: ADA = {data_ready, get_data, 

send_data}
– DataStore: ASt = {send_data}

• The entire alphabet of the composite process 
is denoted by Σ .
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CSP

• The entire data acquisition system would be 
indicated by the alphabetized parallel 
composition of the three processes:
DAS = DataSample ASa7ADA DataAq ADA7ASt

DataStore

• Two processes running in alphabetized 
parallel with each other must agree 
(synchronize) on events which are common 
to their alphabets.
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CSP Details

Traces
– The traces of a process is the set of all 

possible sequences of events in which it 
can engage. 

– The traces of Data_Store are simple:

• {<>, <send_data>n, 0 ≤ n ≤ ∞}

• <> is the empty trace.
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CSP Details

Traces
DataAq can have engaged in no events, or 
any combination of the events data_ready, 
get_data, and send_data in the proper 
order:
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CSP Details

Traces of DataAq:
traces(DataAq) = {<>, <data_ready>,

<data_ready, get_data>, <data_ready,
get_data, send_data>n, <data_ready,
get_data, send_data>n ^ <data_ready>,
<data_ready, get_data, send_data>n ^ 
<data_ready, get_data>, 0 ≤ n ≤ ∞}
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CSP Details

• Traces specify formally what a process can
do - if it does anything at all.

• This is a safety property: the trace 
specification should not allow any 
unacceptable operations (e.g., we would not 
want to allow two stores without an 
intervening new sample; thus <...send_data, 
send_data...> is ruled out.
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CSP Details

• Traces do not force a process do 
anything. 

• We force action by limiting what a 
process can refuse to do. This is a 
liveness property.
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CSP Details

• refusal set: a set of events which a 
process can refuse to engage in 
regardless of how long they are offered.

• E.g., the refusal set of DataAq after it 
has engaged in data_ready is 
{data_ready, send_data}.
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CSP Details

Refusals can be shown nicely on the 
transition diagram of DataAq:

data_ready get_data

send_data

{get_data, send_data}

{data_ready, send_data}

{data_ready, get_data}
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CSP Details

• A failure is a pair (s, X), where s is a 
trace and X is the set of events which 
are refused after that trace.

• We force a process to do the right 
things by specifying the acceptable 
failures - thus limiting the failures it can
exhibit.
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CSP Details

Failures
E.g., DataAq cannot fail to accept a new 
data_ready event after a complete cycle; 
its failures cannot contain (<data_ready, 
get_data, send_data>n, {data_ready}).
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CSP Details

• traces:
specify what can be done

• failures:
specify allowed failures

• Together, these guarantee that the 
appropriate things will be done.

• We have only to prevent deadlock and 
livelock...
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CSP Details

Deadlock freedom:
A system is deadlock free if, after any 

possible trace, it cannot refuse the entire 
alphabet Σ :

∀ s . (s, Σ ) ∉ failures(DAS)
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CSP Details

Livelock (divergence) freedom:
– divergences of a process: 

the set of traces after which the process can 
enter an unending series of internal actions.

– A system is divergence free if there are no
traces after which it can diverge:

divergences(DAS) = {}
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CSP Details

• A complete specification:
– Acceptable traces

– Acceptable failures

– Deadlock freedom

– Divergence freedom

• These properties can be checked by 
rigorous CASE tools – from FSE Ltd.
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CSP Details

Refinement
– A specification is often a process that 

exhibits all acceptable implementations -
which may be overkill, but easy to state.

– Implementation Q refines specification P
(P m Q) if:

Q satisfies the properties of P:
– the traces of Q are included in the traces of P;

– the failures of Q are included in the failures of P.
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CSP Details

Refinement of a design problem:
– Initial specification: 

• very general (often highly parallel) 

• correctness easy to verify.

– CASE tools:
verify that a particular implementation (whose 
correctness may not be obvious) properly 
refines the original specification.
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CSP Details

Algebraic manipulations
– Objects and operations within CSP form a 

rigorous algebra.

– Algebraic manipulations:
• demonstrate the equivalence of processes

• transform processes into ones that may be 
implemented more efficiently.
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CSP Details

Algebraic manipulations: simple laws
– Alphabetized parallel composition obeys 

commutative laws
P A7B Q = Q B7A P

– and associative laws
(P A7B Q) B7C R = P A7B (Q B7C R )

– and many, many more...
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CSP Details

Algebraic manipulations: step laws
Step laws:

convert parallel implementations into equivalent 
sequential (single-thread) implementations:
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CSP Details

Step law example:
Assume P = ?x:A → P’ and Q = y:B → Q’

P A7B Q = ?x:(A ∪ B) → P’ A7B Q’

e x ∈ (A ∩ B) u
P’ A7B Q

e x ∈ A u

P A7B Q‘

Repeated application results in a sequence of 
events.



5 July 2001

Copyright G. S. Stiles 2001 35

July 5, 2001 Copyright G. S. Stiles 2001 69

CSP Details

Sequentialization
– The parallel composition of the DataAq and 

DataStore can be sequentialized - which may be 
more efficient on a single processor:

DataAq ADA7ASt DataStore = DaDst = data_ready →
get_data → send_data → DaDst

– The CASE tools will verify that the sequential 
version refines the concurrent version. 
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CSP Tools

ProBE
Process Behaviour Explorer

• Allows manual stepping through a CSP 
description

• Shows events acceptable at each state

• Records traces

• Allows manual check against specifications
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CSP Tools

FDR (a model checker)
Failures-Divergences-Refinement

Mathematically tests for:
– Refinement of one process against another

» Traces

» Failures

» Divergences

– Deadlock freedom

– Divergence freedom
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CSP Compatibility

• “My work group uses the (Yourdon, 
Booch, UML, PowerBuilder, Delphi…
software development system); can I 
still use CSP?”

• Certainly – CSP can be used wherever
you design with processes that interact 
only via CSP-style explicit events.
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CSP Compatibility

“CSP seems to be based on message passing;

Can I use it with locks, critical sections,

semaphores, mutexes and/or monitors???”

Absolutely! As long as your processes interact

only via explicit locks, mutexes, etc., CSP can

describe them – and prove them.
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CSP Mutex

Modeling of shared-memory primitives

Mutex:
claim mutex1;
modify shared variable;

release mutex1;
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CSP Mutex

A CSP mutex process:

Mutex1 = 
claim → release → Mutex1

The process will not allow a second claim 
until a prior claim has been followed by a 
release.
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CSP Mutex

Weaknesses:
– Compiler does not require use of mutex to access 

shared variables.

– A process may neglect to release the mutex, thus 
holding up further (proper) accesses.
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CSP Mutex

A more robust version that allows only the 
process making the claim to complete the 
release:

RMutex = 

claim?ProcID→ release!ProcID

→ Rmutex
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CSP Mutex

Use of the robust mutex:

Proc 29:
claim!29;

modify shared variable;

release?29;
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CSP Mutex

The way it should be done: the shared 
variable is modifiable only by a single 
process (which allows a read as well):

Robust(x) = 
ModifyX!y → Robust(x + y)

readX?x → Robust(x)
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Semaphores

Definitions 

(〈x;〉: operation x is atomic)

Claim semaphore s:

P(s): 〈await (s > 0) s = s – 1;〉

Release semaphore s:

V(s): 〈s = s + 1;〉
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Semaphores

A semaphore process (initialized to s = 1):

SemA = SemA1(1)

SemA1(s) = 

(pA → SemA1(s-1))e s > 0 u STOP

(vA → SemA1(s + 1)
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Summary 1

Thirty+ years of experience shows that
– Complex applications are generally far

easier to design as systems of 
• many (2 – 2000) small, simple processes 

• that interact only via explicit events.

– Careless use of shared memory can lead 
to designs that 

• are extremely difficult to implement

• are not verifiable

• are wrong!
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Summary 2

CSP + Tools:
– Clean, simple specification of concurrent 

systems
– Rigorous verification against specifications
– Proof of deadlock and livelock freedom
– Verifiable conversion between concurrent 

and single-threaded implementations
– Works with any process-oriented 

development system.
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CSP Applications

• Real-time & embedded systems

• Communications management

• Communications security protocols

• Digital design – from gate-level through 
FPGAs to multiple systems on a chip

• Parallel numerical applications

• Algorithm development
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Example:
Ring Network Router

Don Rice, Bin Cai, Pichitpong Soontornpipit

ECE 6750 Class Project

http://www.engineering.usu.edu/ece/

Utah State University
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Ring Network Description

• Three nodes connected in a ring topology

• Two inputs and two outputs per node

• One transmit/receive pair between nodes

• Input must be acknowledged by destination 
before additional input is accepted

• Error-free network: packets are not lost, 
damaged, or duplicated
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Three Two-Input Node Ring

Downstream2

Upstream2
upin2

upin3

downout2

downout3

data2_2
ack2_2

Node 2

Downstream3

Upstream3
upin4

upin5

downout4

downout5

data3_3
ack3_3

Node 3

Downstream1

Upstream1
upin0

upin1

downout0

downout1

downtoup1

data1_1
ack1_1

Node 1

uptodown1

downtoup0

uptodown0

downtoup2

uptodown2

downtoup0

uptodown0

This configuration

sometimes deadlocks!
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Design Procedure

• Began with two-node topologies in CSP

• Used ProBE and FDR to explore designs
– Identified deadlock scenarios

– Verified deadlock-free design

• Implemented application with Java CTJ

• Ported to JCSP applet
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Two-Input/Two-Output Node

• Inputs upin0, upin1
accept data value 
and destination 
ID [0,5]

• Outputs downout0, 
downout1 produce 
data value, source ID [0,5]

• Data flows on solid lines (e.g., uptodown 
bus,) acknowledgments flow on dashed 
lines (e.g., downtoup bus)

Upstream1
upin0

upin1

downout0

downout1

downtoup1

data1_1
ack1_1

Node 1

uptodown1

downtoup0

uptodown0
Downstream1
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Input Handler: “Upstream”

upin0

downtoup1

data1_1
ack1_1

uptodown1

UpHandler11

Mux1

upin1
UpCntrl1

(from output handler)

(to next node)

UpHandler10
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Sample Code from “UpHandler”

public void run()
{ 

intArray packet = null; // packet from test source class
ChanIO UpH      = new ChanIO("UpHandler"+Identity);  // IO wrapper
int ack         = 0;  // acknowledgment from destination
boolean Running = true;  //allow for external control someday

// Repeatedly read data and pass it on:
while(Running)
{

packet = UpH.Read(input, " d.d" );   // Read destination, data from test source
UpH.Write(output, packet, " d.d" );  // Write destination, data to Mux

ack = UpH.Read(ackin, " ack" );       // Wait for ack from UpCntrl

} // End while.

} // End run

Read() and Write() methods were wrappers for CTJ 
try/catch clauses; wrappers were converted to JCSP with 
little impact on router functions.

Java processes developed from CSP are typically very simple.
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Output Handler: “Downstream”

uptodown0 DownHandler10

(from 
previous 

node)

(to input handler)

downout0

downout1

data1_1 ack1_1

downtoup0

DownHandler11

DownMux1Bus(implicit multiplexing using 
Any2OneChannel)

DeMux1



5 July 2001

Copyright G. S. Stiles 2001 47

July 5, 2001 Copyright G. S. Stiles 2001 93

Deadlock Prevention
• Used FDR to 

evaluate alternatives

• A single buffer 
added to the system 
was necessary and 
sufficient to prevent 
deadlock

• Added “passthru” 
buffer to Node 1 in 
Java version

Downstream1

Upstream1
upin0

upin1

downout0

downout1

downtoup1

updatachan
upackchan

Node 1

uptodown1

downtoup0

uptodown0

PassthruBuf

ack1_1
data1_1
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Conclusions

• Design in CSP with FDR testing and 
verification provides confidence not possible 
with Java trial-and-error testing

• Model optimization was critical to operate 
FDR in student lab environment

• Conversion from CSP to Java CTJ or JCSP 
is largely cut-and-paste exercise once basic 
examples are provided…
(designers had little prior Java experience)
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Related USU Projects

• Creation of Java code directly from CSP
E.g., the simple router

• Automatic conversion of CSP from 
parallel to sequential

• Compilation of Java to VHDL/FPGA
• Analysis of autonomous vehicle 

software
• Analysis of internet protocols
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Courses:

• ECE 5740
– Concurrent Programming (under Win32)

– Fall

• ECE 6750
– Concurrent Systems Engineering I (CSP I; Java)

– Spring

• ECE 7710
– Concurrent Systems Engineering II (CSP II; Java, C)

– Add real-time specifications

– Alternate Falls


