
Understanding class 
definitions

Looking inside classes

3.0



Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling



Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

Time for study

• A full-time student week is 40 hours!



Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

Examination

• Course work: 3 assignments
• Programming test

• in lab; at computer
• practical task
• exam conditions

• Programming test MUST be passed
• (pass/fail mark; hurdle requirement)

• Final mark calculated from coursework 
marks



Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

Why BlueJ

• Why Java?
• Why BlueJ?



Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

And, by the way:

• Greenfoot



Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

Main concepts to be covered

• fields
• constructors
• methods
• parameters
• assignment statements



Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

Ticket machines

Demo



Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

Ticket machines – an internal 
view

• Interacting with an object gives us 
clues about its behaviour.

• Looking inside allows us to 
determine how that behaviour is 
provided or implemented.

• All Java classes have a similar-
looking internal view.





Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

Basic class structure

public class TicketMachine
{

Inner part of the class omitted.
} 

The outer wrapper 
of TicketMachine

public class ClassName
{

Fields
Constructors
Methods

} 

The contents 
of a class



Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

Fields

• Fields store values 
for an object.

• They are also known 
as instance 
variables.

• Use the Inspect
option to view an 
object’s fields.

• Fields define the 
state of an object.

public class TicketMachine
{

private int price;
private int balance;
private int total;

Further details omitted.
} 

private int price;

visibility modifier
type

variable name



Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

Constructors

• Constructors 
initialise an object.

• They have the same 
name as their class.

• They store initial 
values into the 
fields.

• They often receive 
external parameter 
values for this.

public TicketMachine(int ticketCost)
{

price = ticketCost;
balance = 0;
total = 0;

} 



Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

Passing data via parameters



Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

Assignment

• Values are stored into fields (and 
other variables) via assignment 
statements:
– variable = expression;
– price = ticketCost;

• A variable stores a single value, so 
any previous value is lost.



Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

Accessor methods

• Methods implement the behaviour of objects.
• Accessors provide information about an 

object.
• Methods have a structure consisting of a 

header and a body.
• The header defines the method’s signature. 

– public int getPrice()

• The body encloses the method’s statements.



Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

Accessor methods

public int getPrice()
{

return price;
} 

return type
method name

parameter list 
(empty)

start and end of method body (block)

return statement

visibility modifier



Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

Test
public class CokeMachine
{
private price;

public CokeMachine()
{

price = 300
}

public int getPrice
{

return Price;
}

• What is 
wrong 
here?

(there are five
errors!)



Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

Test
public class CokeMachine
{
private price;

public CokeMachine()
{

price = 300
}

public int getPrice
{

return Price;
}

}

;

()

int

p

• What is 
wrong 
here?

(there are five
errors!)



Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

Mutator methods

• Have a similar method structure: 
header and body.

• Used to mutatemutate (i.e. change) an 
object’s state.

• Achieved through changing the value 
of one or more fields.
• Typically contain assignment 

statements.
• Typically receive parameters.



Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

Mutator methods

public void insertMoney(int amount)
{

balance = balance + amount;
} 

return type
method name parameter

visibility modifier

assignment statementfield being mutated



Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

Printing from methods

public void printTicket()
{

// Simulate the printing of a ticket.
System.out.println("##################");
System.out.println("# The BlueJ Line");
System.out.println("# Ticket");
System.out.println("# " + price + " cents.");
System.out.println("##################");
System.out.println();

// Update the total collected with the balance.
total = total + balance;
// Clear the balance.
balance = 0;

} 



Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling

Reflecting on the ticket 
machines

• Their behaviour is inadequate in 
several ways:
• No checks on the amounts entered.
• No refunds.
• No checks for a sensible initialisation.

• How can we do better?
• We need more sophisticated behaviour.


	Understanding class definitions
	Time for study
	Examination
	Why BlueJ
	And, by the way:
	Main concepts to be covered
	Ticket machines
	Ticket machines – an internal view
	Basic class structure
	Fields
	Constructors
	Passing data via parameters
	Assignment
	Accessor methods
	Accessor methods
	Test
	Test
	Mutator methods
	Mutator methods
	Printing from methods
	Reflecting on the ticket machines

