
A Notation for Comonads

Dominic Orchard and Alan Mycroft

Computer Laboratory, University of Cambridge
{firstname}.{lastname}@cl.cam.ac.uk

Author’s copy. To appear in LNCS volume of the post-proceedings of IFL’12.

Abstract. The category-theoretic concept of a monad occurs widely as
a design pattern for functional programming with effects. The utility and
ubiquity of monads is such that some languages provide syntactic sugar
for this pattern, further encouraging its use. We argue that comonads,
the dual of monads, similarly provide a useful design pattern, captur-
ing notions of context dependence. However, comonads remain relatively
under-used compared to monads—due to a lack of knowledge of the de-
sign pattern along with the lack of accompanying simplifying syntax.
We propose a lightweight syntax for comonads in Haskell, analogous to
the do-notation for monads, and provide examples of its use. Via our
notation, we also provide a tutorial on programming with comonads.

Many algebraic approaches to programming apply concepts from category the-
ory as design patterns for abstracting and structuring programs. For example,
the category-theoretic notion of a monad is widely used to structure programs
with side effects, encapsulating effects within a parametric data type [1, 2]. A
monadic data type M has accompanying operations which provide composition
of functions with structured output of type a→M b. Side effects can be seen as
impure output behaviour, encoded by the data type M .

Monads are so effective as an abstraction technique that some languages
provide a lightweight syntactic sugar simplifying programming with monads,
such as the do-notation in Haskell and the let! notation in F# [3].

Comonads are the dual structure to monads, where a comonadic data type
C has operations for the composition of functions with structured input, of type
C a→ b. Whilst monads capture impure output behaviour (side effects), comon-
ads capture impure input behaviour, often described as context dependence, en-
coded by the data type C. There are various examples of programming with
comonads in the literature including dataflow programming via streams [4], at-
tribute evaluation [5], array computations [6], and more [7]. However, despite
these examples, comonads are less widely used than monads.

There are two reasons for this: one is that they are less well-known, the other,
related reason is the lack of language support, which impedes the use of comon-
ads as a design pattern. To remedy this, we propose a syntax which simplifies
programming with comonads in Haskell, called the codo-notation, which also
serves to promote the comonad design pattern.

In Haskell, comonads are defined by the following class:1

1 Available via Edward Kmett’s Control.Comonad package.

class Comonad c where
extract :: c a → a
extend :: (c a → b)→ c a → c b

The contextual view of comonads is that values of type c a encode context-
dependent computations of values of type a, and functions c a → b describe local
operations within some context. The extract operation defines a notion of current
context and is a trivial local operation returning the value at this context; extend
defines the range of all possible contexts, extending a local operation to a global
operation by applying it at every context. Thus comonads abstract “boilerplate”
code for extending an operation, defined at one context, to all contexts.

For example, arrays can be seen as encoding contextual computations, where
a value depends on its position. An array paired with an array index denoting the
current context – called the cursor – is a comonad. Its extract operation accesses
the cursor element of the array; extend applies a local operation, which computes
a value from an array at a particular cursor, to an array at each possible cursor
index in its domain (i.e., globally), computing an array of results [6]. Local
operations of this form, on arrays, are ubiquitous in image processing, scientific
computing, and cellular automata.

The codo-notation simplifies programming with comonads. For example, the
following codo-block defines a local operation for computing image contours:

contours :: CArray (Int , Int) Float → Float
contours = codo x ⇒ y ← gauss2D x

z ← gauss2D y
w ← (extract y)− (extract z)
laplace2D w

where CArray i a is a cursored-array data type, with index type i and element
type a, and gauss2D , laplace2D :: CArray (Int , Int) Float → Float compute,
at a particular index, discrete Gaussian and Laplace operators on 2D arrays. A
contour image can thus be computed by applying (extend contours) to an image.

The primary contribution of this paper is the codo-notation, introduced in
detail in Section 1, continuing with arrays as an example. The notation desug-
ars into the operations of a comonad (Section 3) which provides an equational
theory for the notation following from the laws of a comonad (Section 2). The
codo-notation is analogous to the do-notation for programming with monads in
Haskell, but with some notable differences which are explained from a categorical
semantics perspective in Section 4. Section 5 discusses related work, including
a comparison of the codo-notation to Haskell’s arrow notation.

This paper contributes examples (arrays, trees, and graphs), explanation,
and notation to promote comonads in programming. A prototype of the nota-
tion, as a macro-based library using quasi-quoting brackets, is provided by the
codo-notation package.2 An implementation as a GHC extension is in progress.

2 http://hackage.haskell.org/package/codo-notation

Array example The array comonad is used throughout the next section to
introduce codo. It is defined in Haskell by the following data type and instance:

data CArray i a = CA (Array i a) i

instance Ix i ⇒ Comonad (CArray i) where
extract (CA a i) = a ! i
extend f (CA a i) = let es ′ = map (λj → (j , f (CA a j))) (indices a)

in CA (array (bounds a) es ′) i

where extract accesses the cursor element using the array indexing operation !,
and, for every index j of the parameter array, extend applies f to the array with
j as its cursor, returning an index-value pair list from which the result array
is constructed. Note, the return and parameter arrays have the same size and
cursor, i.e., extend preserves the incoming context in its result.

Many array operations can be defined as local operations c a → b (hereafter
comonadic operations, sometimes called coKleisli arrows/morphisms in the lit-
erature) using relative indexing, e.g., the laplace2D operator, for approximating
differentiation, can be defined:

laplace2D :: CArray (Int , Int) Float → Float
laplace2D a = a ? (−1, 0) + a ? (1, 0) + a ? (0,−1) + a ? (0, 1)− 4 ∗ a ? (0, 0)

where (?) abstracts relative indexing with bounds checking and default values:3

(?) :: (Ix i ,Num a,Num i)⇒ CArray i a → i → a
(CA a i) ? i ′ = if (inRange (bounds a) (i + i ′)) then a ! (i + i ′) else 0

(where Ix is the class of valid array-index types). Whilst laplace2D computes the
Laplacian at a single context (locally), extend laplace2D computes the Laplacian
at every context (globally), returning an array rather than a single float.

1 Introducing codo

The codo-notation provides a form of let-binding for composing comonadic op-
erations, which has the general form and type:

(codo p ⇒ p← e; e) :: Comonad c ⇒ c t → t ′

(where p ranges over patterns, e over expressions, and t, t′ over types). Compare
this with the general form and type of the monadic do-notation:

(do p← e; e) :: Monad m ⇒ m t

Both comprise zero or more binding statements of the form p ← e (separated
by semicolons or new lines), preceding a final result expression. A codo-block
however defines a function, with a pattern-match on its parameter following
the codo keyword. The parameter is essential as comonads describe functions
with structured input. A do-block is instead an expression (nullary function).
Section 4 compares the two notations in detail.

3 There are many alternative methods for abstracting boundary checking and values;
our choice here is for simplicity of presentation rather than performance or accuracy.

Comonads and codo-notation for composition The extend operation of a
comonad provides composition for comonadic functions as follows:

(◦̂) :: Comonad c ⇒ (c y → z)→ (c x → y)→ c x → z

g ◦̂ f = g ◦ (extend f) (1)

The laws of a comonad are equivalent to requiring that this composition is
associative and that extract is its identity (discussed further in Section 2).

The codo-notation abstracts over extend in the composition of comonadic
operations. For example, the composition of two array operations:

lapGauss = laplace2D ◦ (extend gauss2D)

(i.e., laplace2D ◦̂ gauss2D), can be written equivalently in the codo-notation:

lapGauss = codo x ⇒ y ← gauss2D x
laplace2D y

where lapGauss ::CArray (Int , Int) Float → Float , x , y ::CArray (Int , Int) Float .
The parameter of a codo-block provides the context of the whole block where

all subsequent local variables have the same context. For example, x and y in
the above example block are arrays of the same size with the same cursor.

For a variable-pattern parameter, a codo-block is typed by the following rule:
(here typing rules are presented with a single colon : for the typing relation)

[varP]
Γ ; x : c t `c e : t′

Γ ` (codo x ⇒ e) : Comonad c ⇒ c t → t ′

where `c types statements of a codo-block. Judgments Γ ;∆ `c . . . have two
sequences of variable-type assumptions: Γ for variables outside a block and ∆ for
variables local to a block. For example, variable-pattern statements are typed:

[varB]
Γ ;∆ `c e : t Γ ;∆, x : c t `c r : t′

Γ ;∆ `c x ← e; r : t ′

where r ranges over remaining statements and result expression i.e. r = p← e; e′.
A variable-pattern statement therefore locally binds a variable, in scope for

the rest of the block. The typing, where e : t but x : c t , gives a hint about codo
desugaring. Informally, (codo y ⇒ x ← e; e ′) is desugared into two functions,
the first statement as λy → e and the result expression as λx → e ′. These are
comonadically composed, i.e., (λx → e ′) ◦ (extend (λy → e)), thus x : c t.

Further typing rules for the codo-notation are collected in Fig. 1.

Non-linear plumbing For the lapGauss example, codo does not provide a
significant simplification. The codo-notation more clearly benefits computations
which are not mere linear function compositions. Consider a binary operation:

minus :: (Comonad c,Num a)⇒ c a → c a → a
minus x y = extract x − extract y

Γ ` codo p ⇒ e : Comonad c ⇒ c t → t ′

[varP]
Γ ; x : c t `c e : t′

Γ ` (codo x ⇒ e) : c t → t ′

[tupP]
Γ ; x : c t , y : c t ′ `c e : t′′

Γ ` (codo (x , y)⇒ e) : c (t , t ′)→ t ′′

[wildP]
Γ ; · `c e : t

Γ ` (codo ⇒ e) : ∀a.c a → t

Γ ;∆ `c p← e; e : t

[varB]
Γ ;∆ `c e : t Γ ;∆, x : c t `c r : t′

Γ ;∆ `c x ← e; r : t ′

[tupB]

Γ ;∆ `c e : (t1, t2)
Γ ;∆, x : c t1, y : c t2 `c r : t′

Γ ;∆ `c (x , y)← e; r : t ′

[letB]
Γ ;∆ `c e : t Γ ;∆, x : t `c r : t′

Γ ;∆ `c let x = e; r : t ′

[exp]
Γ ` e : t

Γ ; · `c e : t
[var]

Γ, v : c t ;∆ `c e : t′

Γ ;∆, v : c t `c e : t′

Fig. 1. Typing rules for the codo-notation

which subtracts its parameters at their respective current contexts. Using codo,
minus can be used to compute a pointwise subtraction, e.g.

contours ′ = codo x ⇒ y ← gauss2D x
z ← gauss2D y
w ← minus y z
laplace2D w

(equivalent to contours in the introduction which inlined the definition of minus).
The context, and therefore cursor, of every variable in the block is the same as
that of x . Thus, y and z have the same cursor and minus is applied pointwise.
The equivalent program without codo is considerably more complex:

contours ′ x = let y = extend gauss2D x
w = extend (λy ′ → let z = extend gauss2D y ′

in minus y ′ z) y
in laplace2D w

where the nested extend means that y ′ and z have the same cursor, thus minus y ′ z
is pointwise. An alternate, more point-free, approach uses the composition ◦̂:

contours ′ = laplace2D ◦̂ (λy ′ → minus y ′ ◦̂ gauss2D $ y ′) ◦̂ gauss2D

This approach resembles that of using monads without the do-notation, and
is elegant for simple, linear function composition. However, for more complex
plumbing the approach quickly becomes cumbersome. In the above two (non-
codo) examples, care is needed to ensure that minus is applied pointwise. An
incorrect attempt to simplify the first non-codo contours ′ might be:

contour bad x = let y = extend gauss2D x
z = extend gauss2D y
w = extend (minus y) z

in laplace2D w

In the above, extend (minus y) z subtracts z at every context from y at a par-
ticular, fixed context, i.e., not a pointwise subtraction. An equivalent expression
to contours bad can be written using nested codo-blocks:

contour bad = codo x ⇒ y ← gauss2D x
(codo y ′ ⇒ z ← gauss2D y ′

w ← minus y z
laplace2D w) y

where y in minus y z is bound in the outer codo-block and thus has its cursor
fixed, whilst z is bound in the inner codo-block and has its cursor varying. Vari-
ables bound outside of the nearest enclosing codo-block are “unsynchronised”
with respect to the context inside the block, i.e., at a different context.

A codo-block may have multiple parameters in an uncurried-style, via tuple
patterns ([tupP], Fig. 1). For example, the following block has two parameters,
which are Laplace-transformed and then pointwise added:

lapPlus :: CArray Int (Float ,Float)→ Float
lapPlus = codo (x , y)⇒ a ← laplace2D x

b ← laplace2D y
(extract a) + (extract b)

This block has a single comonadic parameter with tuple elements, whose type
is of the form c (a, b). However, inside the block x : c a and y : c b as the
desugaring of codo unzips the parameter (see Section 3). A comonadic tuple
parameter ensures that multiple parameters have the same context, e.g., x and y
in the above example have the same shape/cursor. Therefore, a pair of arguments
to lapPlus must be zipped first, provided by the czip operation:

class ComonadZip c where czip :: (c a, c b)→ c (a, b)

For CArray , czip can be defined:

instance (Eq i , Ix i)⇒ ComonadZip (CArray i) where
czip (CA a i ,CA a ′ j) =

if (i 6≡ j ∨ bounds a 6≡ bounds a ′) then error "Shape/cursor mismatch"

else let es ′′ = map (λk → (k , (a ! k , a ′ ! k))) (indices a)
in CA (array (bounds a) es ′′) i

Thus only arrays of the same shape and cursor can be zipped together. In the
contextual understanding, the two parameter arrays are thus synchronised in
their contexts. The example of lapPlus can be applied to two (synchronised)
array parameters x and y by extend lapPlus (czip (x , y)).

Any data constructor pattern can be used for the parameter of a codo-block
and on the left-hand side of a binding statement. For example, the following uses
a tuple pattern in a binding statement (see [tupB], Fig. 1), which is equivalent
to lapPlus by exchanging a parameter binding with a statement binding:

lapPlus = codo z ⇒ (x , y)← extract z
a ← laplace2D x
b ← laplace2D y
(extract a) + (extract b)

Tuple patterns are specifically discussed here since they provide multiple pa-
rameters to a codo-block, as seen above. The typing of a general pattern in a
statement, for some type/data constructor T , is roughly as follows:

[patB]
Γ ;∆ `c e : T t̄ Γ ;∆,∆′ `c r : t′ dom(∆′) = var-pats(p)

Γ ;∆ `c (T p)← e; r : t′

where dom(∆′) is the set of variables in a sequence of typing assumptions, and
var-pats is the set of variables occurring in a pattern.

Example: labelled graphs Many graph algorithms can be structured by a
comonad, particularly compiler analyses and transformations on control flow
graphs (CFGs). The following defines a labelled-graph comonad as a (non-empty)
list of nodes which are pairs of a label and a list of their connected vertices:

data LGraph a = LG [(a, [Int])] Int -- pre-condition: non-empty lists

instance Comonad LGraph where
extract (LG xs c) = fst (xs !! c)
extend f (LG xs c) = LG (map (λc′ → (f (LG xs c′), snd (xs !! c′)))

[0 . . length xs]) c

The LGraph-comonad resembles the array comonad where contexts are posi-
tions with a cursor denoting the current position. Analyses over CFGs can be
defined using graphs labelled by syntax trees. For example, a live-variable anal-
ysis (which, for an imperative language, calculates the set of variables that may
be used in a block before being (re)defined) can be written, using codo, as:

lva = codo g ⇒ lv0 ← (defUse g , []) -- compute definition/use sets, paired
lva ′ lv0 -- with initial empty live-variable set

lva ′ = codo ((def , use), lv)⇒
live out ← foldl union [] (successors lv)
live in ← union (extract def) ((extract live out) \\ (extract use))
lvp ← ((extract def , extract use), extract live in)
lvNext ← lva ′ lvp
if (lv ≡ live in) then (extract lv) else (extract lvNext)

where union and set difference (\\) on lists have type Eq a ⇒ [a]→ [a]→ [a]
and defUse :: LGraph AST → ([Var], [Var]) computes the sets of variables
defined and used by each block in a CFG. The analysis is recursive, refining the
set of live variables until a fixed point is reached.

The live variables for every block of a CFG can be computed by extend lva.

Costate, trees, and zippers Arrays were used to introduce comonads and
codo to aid understanding since the notion of context is made clear by the
cursor. The above graph example has a similar form. Both are instances of a
general comonad, often called the costate comonad, whose data type is a pair of
a function from contexts to values and a particular context: C a = (s→ a)× s.

For both arrays and labelled graphs, the type of contexts is a finite domain
of integer, or integer-tuple, indices. For labelled graphs, the costate comonad is
combined with product comonad (see [8]) pairing the label of a node with the
list of its successors, thus the type is isomorphic to C a = (s→ (a× [s]))× s.

For costate, the notion of context is explicitly provided by a cursor acting
as a pointer or address. This is not the only way to define a notion of context.
Other data types encode the context structurally rather than using a cursor. For
example, a comonad of labelled binary trees can be defined:

data BTree a = Leaf a | Node a (BTree a) (BTree a)

instance Comonad BTree where
extract (Leaf a) = a
extract (Node a l r) = a

extend f (Leaf a) = Leaf (f (Leaf a))
extend f t@(Node a l r) = Node (f t) (extend f l) (extend f r)

The action of extend is to apply its parameter function f to successive suffix
trees, thus f can only access its children, not its parents. Thus extend not only
defines what it means for a local (comonadic) operation to be applied globally,
but also which contexts are accessible from each possible context.

A tree comonad that has a structural notion of context but whose comonadic
operations can access any part of the tree can be defined using Huet’s zipper data
type, where trees are split into a path to the current position and the remaining
parts of the tree [9, 5]. For a certain class of data types it has been shown that a
zipper structure can be automatically derived by differentiation of the data type
[10]. All container-like zippers are comonads [11] where the notion of context is
encoded structurally, rather than by a pointer -like cursor. The codo-notation
thus provides a convenient syntax for programming with zipper comonads.

2 Equational Theory

As shown in Section 1, extend provides composition for comonadic functions,
Eq. (1). The laws of a comonad are exactly the laws that guarantee this compo-
sition is associative with extract as a left and right unit, i.e.

(right unit) f ◦̂ extract ≡ f extend extract ≡ id [C1]
(left unit) extract ◦̂ f ≡ f extract ◦ (extend f) ≡ f [C2]

(associativity) h ◦̂ (g ◦̂ f) extend g ◦ extend f
≡ (h ◦̂ g) ◦̂ f ≡ extend (g ◦ extend f) [C3]

As there is no mechanism for enforcing such rules in Haskell the programmer is
expected to verify the laws themselves.

Since codo is desugared into the operations of a comonad, the comonad laws
imply equational laws for the codo-notation, shown in Fig. 2(a). Fig. 2(b) shows
additional codo laws which follow from the desugaring.

Comonads are functors The category theoretic notion of a functor can be
used to abstract map-like operations on parametric data types. In Haskell, func-
tors are described by the Functor type class, of which map provides the list
instance:

class Functor f where fmap :: (a → b)→ f a → f b

instance Functor [] where fmap = map

All comonads are functors by the following definition using extend and extract:

cmap :: Comonad c ⇒ (a → b)→ c a → c b
cmap f x = extend (f ◦ extract)

While fmap applies its parameter function to a single element of a data type,
extend applies its parameter function to a subset (possibly the whole) of the
parameter structure. Thus extend generalises fmap.

Monoidal operation The czip :: (c a, c b) → c (a, b) operation introduced in
Section 1 corresponds to that of a (semi)-monoidal functor which may satisfy
various laws with respect to the comonad (see the discussion of (semi)-monoidal
comonads in [8]). The following property, which we call idempotency of a semi-
monoidal functor, frequently holds of comonad/czip implementations:

czip (x , x) ≡ cmap (λy → (y , y)) x (2)

This property implies codo laws relating tuple patterns and czip (Fig. 2(c)). For
every rule involving a tuple pattern there is an equivalent rule derived using the
(χ) rule (Fig. 2(b)) which exchanges parameter and statement binders.

Shape preservation The shape of a data structure is defined by its structure
without any values, which can be computed as such: (where const x = λ → x)

shape = cmap (const ())

An interesting derived property of comonads is that, for any comonadic function
f , (extend f) preserves the shape of the incoming structure in its result. For
example, extend of the array comonad preserves the size, cursor, and dimensions
of the parameter array in the result. Appendix A gives a proof of this property,
which is stated formally, for a comonad c and function f :: c a → b, as:

shape ◦ (extend f) ≡ shape (3)

This property explains why all locally bound variables in a codo-block bind
comonadic values which have the same context.

(a) Comonad laws

[C1] codo x ⇒ f x

≡ codo x ⇒ y ← extract x
f y

[C2] codo x ⇒ f x

≡ codo x ⇒ y ← f x
extract y

[C3] (iff x is not free in e1)

codo x ⇒ y ← e1
z ← e2
e3

≡ codo x ′ ⇒ z ← (codo x ⇒ y ← e1
e2) x ′

e3

≡ codo x ′ ⇒ y ← e1
(codo x ⇒ z ← e2

e3) x ′

(b) Pure laws

(η) codo x ⇒ f x ≡ f

(β) codo x ⇒ z ← (codo y ⇒ e1) x
e2

≡ codo x ⇒ y ← extract x
z ← e1
e2

(χ) codo p ⇒ e

≡ codo z ⇒ p ← extract z
e

(c) Additional laws – if Eq. (2) holds

codo x ⇒ f a b

≡ codo x ⇒ (a ′, b′)←extract (czip (a, b))
f a ′ b′

codo (b, c)⇒ f (czip (b, c))

≡ codo (b, c)⇒ z ← (extract b, extract c)
f z

Fig. 2. Equational laws for the codo-notation

3 Desugaring codo

The desugaring of codo is based on Uustalu and Vene’s semantics for a context-
dependent λ-calculus [8]. It has two parts: translation of statements into com-
position via extend , and management of the environment for variables bound
in a codo-block. The first part is explained by considering a restricted codo-
notation, which only ever has one local variable, bound in the previous statement.

1). Single-variable environment For a comonad C , consider the codo-block:

foo1 = (codo x ⇒ y ← f x ; g y) :: C x → z

where f :: C x → y , g :: C y → z . The first statement y ← f x can be desugared
as a function with parameter x and body f x , the second, which is the final result
expression, can be similarly desugared as a function from y to its expression, i.e.
(λx → f x) and (λy → g y). Both are functions with structured input, thus the
semantics of foo1 is their comonadic composition (equivalent to g ◦̂ f):

Jfoo1 K = (λy → g y) ◦ (extend (λx → f x)) :: Cx→ z.

2). Multiple-variable environment A codo-block may bind multiple variables,
allowing the following example with binary function h :: Cx→ Cy → z:

foo2 = (codo x ⇒ y ← f x ; h x y) :: C x → z

The first statement cannot be desugared as before since the second statement
uses both x and y , thus the desugaring must return x with the result of f x :

(λx → (extract x , f x)) :: C x → (x , y) (#4)

Applying extract to x means that extend (#4), of type C x → C (x , y), returns
the parameter x and the result of f x synchronised in their contexts.

The desugaring of the second statement is a function taking a value C (x , y)
and unzipping it, binding the constituent values to x and y in the scope of the
result expression, where x and y are synchronised at the same context since
cmap preserves the context encoded by the comonadic value:

(λenv → let x = cmap fst env

y = cmap snd env in h x y) :: C (x , y)→ z (#5)

The desugaring of foo2 is therefore Jfoo2 K = (#5) ◦ (extend (#4)).

3.1 General construction

The desugaring translation traverses the list of binding statements in a codo-
block, accumulating a comonadic environment of the local variables bound so
far. The accumulated environment is structured by right-nested pairs terminated
by a unit value (). Thus, the actual desugaring of foo2 is:

Jfoo2 K = (λenv → let y = cmap fst env
x = cmap (fst ◦ snd) env in h x y)

◦ (extend (λenv → (let x = cmap fst env in f x , extract env)))
◦ (cmap (λenv → (env , ())))

For foo2 , the environment in the first statement contains just x and has type
C (x , ()), and in the second statement contains x and y and has type C (y , (x , ())).

The top-level translation of a codo-block is defined:

Jcodo x ⇒ bK = Jx ` bKc ◦ (cmap (λx → (x , ())))

Jcodo ⇒ bK = J· ` bKc ◦ (cmap (λx → (x , ())))

Jcodo (x , y)⇒ bK = Jx, y ` bKc ◦ cmap (λp → (fst p, (snd p, ())))

where J∆ ` bKc is the translation of the binding statements b within a codo-
block, with the scope of the local variables ∆. In the translation here, types are
omitted for brevity. A translation with the types included can be found in the
first author’s forthcoming PhD dissertation [12].

The top-level translation generalises easily to arbitrary patterns. In each case,
J−Kc is pre-composed with a lifted projection function, which projects values
inside the incoming parameter comonad to right-nested pairs terminated by ().
The translation of binding statements yields a Haskell function of type:

J∆ ` b ; eKc : Comonad c ⇒ c (t1, (. . . , (tn, ())))→ t

where e : t and ∆ = v1, . . . , vn where vi : c ti. The definition of J−Kc is:

J∆ ` eKc = J∆ ` eKexp
J∆ ` x←e; rKc = Jx,∆ ` rKc ◦extend (λenv→(J∆ ` eKexp env , extract env))

J∆ ` (x , y)←e; rKc = Jx, y,∆ ` rKc ◦ extend (λenv→(λ((x , y), ∆)→(x , (y , ∆)))

(J∆ ` eKexp env , extract env))

where J∆ ` eKexp translates expressions on the right-hand side of a statement or
for the result of a block. The last case translates tuple-pattern statements where
λ((x , y), ∆) → (x , (y , ∆))) reformats results into the right-nested tuple format
of the environment; this generalises in the obvious way to arbitrary patterns.

The translation of expressions unzips the incoming comonadic environment,
binding the values to the variables in ∆ with a local let-binding:

Jv1, . . . , vn ` eKexp = λenv → let [vi = cmap (fst ◦ snd i−1) env]n1 in e

where sndk means k compositions of snd and snd0 = id .
The next section compares codo-notation with do-notation, and explains

why the desugaring of codo-notation is more complex.

4 Comparing do- and codo-notation

Whilst comonads and monads are dual, this duality does not appear to extend
to the codo- and do-notation. Both provide let-binding syntax, for composition
of comonadic and monadic operations respectively. However, codo-blocks are
parameterised, of type c a → b for a comonad c, whilst do-blocks are unpa-
rameterised, of type m a for a monad m. Since comonads abstract functions
with structured input, the parameter to a codo-block is important. In the do-
notation, expressions have implicit input via their free variables and Haskell’s
scoping mechanism is reused for handling local variables in a do-block.

The codo- and do-notation can be seen as internal domain-specific lan-
guages, for contextual and effectful computations respectively, with their seman-
tics defined by translation to Haskell. This perspective is similar to the approach
of categorical semantics, where typed programs are given a denotation as a mor-
phism4 in some category, mapping from the inputs of a program to the outputs.
The disparity between codo- and do-notation is illuminated by this approach.

Categorical semantics For the simply-typed λ-calculus, the traditional ap-
proach recursively maps the type derivation of an expression to a morphism [13]:

JΓ ` e : tK : (Jt1K× . . .× JtnK) −→ JtK

where Γ = x1 : t1, . . . xn : tn. Thus, an expression e : t with the free-variable
typing assumptions Γ is modelled as a morphism from a product of the types
for the free variables, as inputs, to the result type as the output.

4 Morphisms generalise the notion of function. Readers unfamiliar with category the-
ory may safely replace ‘morphism’ with ‘function’ here.

Categorical semantics for effectful computations Moggi showed that ef-
fectful computations can be given a semantics in terms of a Kleisli category [14,
15], which has morphisms a→ m b for a monad m, with denotations:

Jx1 : t1, . . . xn : tn ` e : tK : (Jt1K× . . .× JtnK) −→ m JtK

In Moggi’s calculus, let-binding corresponds to a call-by-value (eager) evaluation
of effects followed by substitution of a pure value, corresponding to composition
of the denotations provided by the bind operation of a monad. The semantics
of multi-variable environments requires a strong monad : a monad with an ad-
ditional strength operation. The effectful semantics for let-binding is as follows

(here a
f−→ b abbreviates f : a → b with arrow concatenation expressing compo-

sition; J−K brackets are elided on types in morphisms for brevity):

JΓ ` e : tK = g : Γ → m t JΓ, x : t ` e′ : t′K = h : Γ × t→ m t′

JΓ ` let x = e in e′ : t′K = Γ
〈id,g〉−−−→Γ ×mt

strength−−−−−→ m(Γ×t) bind h−−−−→ mt′
(6)

where 〈f, g〉 is the function pairing: λx → (f x , g x), bind is the prefix version of
Haskell’s (>>=) :: Monad m ⇒ m a → (a → m b) → m b operator and strength
provides distributivity of × over m:

strength : (a×m b)→ m (a× b)
bind : (a→ m b)→ (m a→ m b)

Whilst the do-notation provides a semantics for effectful let-binding embedded
in Haskell, the translation is simplified by reusing Haskell’s scoping mechanism
since, in Haskell, all monads are strong with a canonical strength:

strength :: Monad m ⇒ (a,m b)→ m (a, b)
strength (a,mb) = mb >>= (λb → return (a, b))

It is straightforwardly proved that this definition of strength satisfies the prop-
erties of a strong monad (see [14] for these properties). The standard translation
of do can be derived from (6) by inlining the above strength and simplifying
according to the monad laws:

Γ ` e : m t Γ, x : t ` e′ : m t′

Γ ` Jdo x ← e; e ′K : m t′ ≡ Γ ` e >>= (λx → e ′) : m t′

This gives a translation using just the monad operations and Haskell’s scop-
ing mechanism to define the semantics of multi-variable scopes for effectful let-
binding. Thus the inputs to effectful computations are handled implicitly and so
a do-block is an expression of type m a.

Categorical semantics for contextual computations The dual of Moggi’s
semantics interprets expressions in a coKleisli category, with denotations:

Jx1 : t1, . . . xn : tn ` e : tK : c (Jt1K× . . .× JtnK) −→ JtK

for a comonad c. Uustalu and Vene gave the semantics of a context-dependent
calculus in this form [8].

For a comonadic semantics, the input of an expression – the values of the free
variables – thus have a comonadic product structure rather than just a product
structure as in the monadic approach. Therefore, Haskell’s scoping mechanisms
cannot be directly used since the variables local to a codo-block must have the
same comonadic context and are therefore wrapped in a comonadic data type.
The local environment of a codo-block is therefore handled manually in the
desugaring of codo resulting in a more complicated translation than that of
the do-notation. The desugaring of statements is equivalent to the semantics of
let-binding in Uustalu and Vene’s approach:

JΓ ` e : tK = g : c Γ → t JΓ, x : t ` e′ : t′K = h : c (Γ × t)→ t′

JΓ ` let x = e in e′ : t′K = c Γ
extend〈extract,g〉−−−−−−−−−−−→ c (Γ × t) h−→ t′

The other parts of the desugaring manage projections from the (comonadic) en-
vironment, simulating application and variable access in a comonadic semantics.

5 Related Work and Conclusions

Arrow notation In Haskell, various notions of computation can be encoded as
a category structure, with additional arrow operations for constructing compu-
tations and handling environments, defined by the Category and Arrow classes:

class Category cat where
id :: cat x x
(◦) :: cat y z → cat x y → cat x z

class Category a ⇒ Arrow a where
arr :: (x → y)→ a x y
first :: a x y → a (x , z) (y , z)

A Category thus has a notion of composition and identity for its morphisms,
which are modelled by the type cat x y . The Arrow class provides arr for
promoting a Haskell function to a morphism and first transforms a morphism to
take and return an extra parameter, used for threading an environment through
a computation. Other arrow combinators can be derived from this minimal set.

Every comonad defines a coKleisli category, whose morphisms have struc-
tured input, where composition is defined as in Section 1. Furthermore, all coK-
leisli categories in Haskell are arrows:

data CoKleisli c x y = CoK {unCoK :: (c x → y)}
instance Comonad c ⇒ Category (CoKleisli c) where

id = CoK extract
(CoK g) ◦ (CoK f) = CoK (g ◦ (extend f))

instance Comonad c ⇒ Arrow (CoKleisli c) where
arr k = CoK (k ◦ extract)
first (CoK f) = CoK (λx → (f (cmap fst x), extract (cmap snd x)))

where arr pre-composes a function with extract, and first is defined similarly to
the handling of the local block environment in the desugaring of codo.

The arrow notation simplifies programming with arrows [16, 17], comprising:
arrow formation (proc x → e), arrow application (f ≺ x) and binding (x ← e).
Given the above coKleisli instances for Category and Arrow , comonadic opera-
tions can be written in the arrow notation instead of using the codo-notation.
For example, the original contours example can be written as follows:

proc x → do y ← CoK gauss2D ≺ x
z ← CoK gauss2D ≺ y
w ← returnA ≺ y − z
CoK laplace2D ≺ w

The arrow notation here is not much more complicated than codo, requiring
just the additional overhead of the arrow application operator ≺ and lifting of
gauss2D and laplace2D by CoK . One difference is that the variables here have
a non-comonadic type, i.e., Float rather than CArray (Int , Int) Float .

The arrow notation is however more cumbersome than codo when plumbing
comonadic values, for example when using comonadic binary functions (of type
c t → c t ′ → t ′′). The alternate definition of contours using minus becomes:

proc x → do y ← CoK gauss2D ≺ x
z ← CoK gauss2D ≺ y
w ← CoK (λv → minus (fmap fst v) (fmap snd v)) ≺ (y , z)
CoK laplace2D ≺ w

where v :: c (y , z) must be deconstructed manually. Whilst minus can be inlined
here and the code rewritten to the more elegant first example, this is only possible
since minus applies extract to both arguments. For other comonadic operations,
with more complex behaviour, this refactoring is not always possible.

Comparing the two, arrow notation appears as powerful as codo-notation,
in terms of the computations which can be expressed. Indeed, from a categor-
ical perspective, both notations need only a comonad structure (i.e., coKleisli
category) with no additional closed or monoidal structure (see Paterson’s dis-
cussion [17, §2.1]). However, whilst arrow notation is almost as simple as codo
for some purposes, the syntax is less natural for more complicated plumbing
of comonadic values (as seen above). We argue that codo provides the most
elegant and natural solution to programming with comonads, with a cleaner
applicative-style.

Other applications There are many interesting comonads which have not been
explored here. For example, the semantics of the Lucid dataflow language are
captured by an infinite stream comonad [4], which was used by Uustalu and
Vene to define an interpreter for Lucid in Haskell. Using codo-notation, Lucid
can be embedded directly into Haskell as an internal domain-specific language.

Many comonadic data types are instances of the general concept of contain-
ers. Containers comprise a set of shapes S and, for each shape s ∈ S, a type of
positions Ps, with the data type C a =

∑
s∈S(Ps→ a), i.e., a coproduct of func-

tions from positions to values for each possible shape [18]. Ahman et al. recently

showed that all directed containers (those with notions of sub-shape) are comon-
ads, where positions are contexts and sub-shapes define accessibility between
contexts for the definition of extend [11]. The labelled binary-tree example in Sec-
tion 1 can be described as a directed-container comonad. The costate comonad
can be generalised to cursored containers with type C a =

∑
s∈S(Ps→ a)×Ps.

Whilst the codo-notation was developed here in Haskell, it could be applied
in other languages with further benefits. For example, a codo-notation for ML
could be used to abstract laziness using a delayed-computation comonad with
data type C a = ()→ a, or defining lazy lists using the stream comonad.

Concluding remarks Comonads essentially abstract boilerplate code for data
structure traversals, allowing succinct definitions of local operations by abstract-
ing their promotion to global operations. The codo-notation presented here sim-
plifies programming with comonads. We hope this prompts the use of comonads
as a design pattern and tool for abstraction, and promotes further exploration
of comonads yielding new and interesting examples.

Whilst the codo keyword is used in the notation here, some may prefer an al-
ternate keyword as codo-notation is not exactly dual to do-notation (Section 4).
For example, using context as the keyword provides more intuition about its
use, akin to do, but causes more serious namespace pollution.

Acknowledgements We thank Jeremy Gibbons, Ralf Hinze, Tomas Petricek,
Tarmo Uustalu, and Varmo Vene for helpful discussions, and to the anonymous
reviewers for their comments on this paper and an earlier draft. This research
was supported by an EPSRC Doctoral Training Award.

References

1. Wadler, P.: The essence of functional programming. In: Proceedings of POPL ’92,
ACM (1992) 1–14

2. Wadler, P.: Monads for functional programming. Advanced Functional Program-
ming (1995) 24–52

3. Petricek, T., Syme, D.: Syntax Matters: writing abstract computations in F#.
In: Pre-proceedings of TFP (Trends in Functional Programming), St. Andrews,
Scotland (2012)

4. Uustalu, T., Vene, V.: The Essence of Dataflow Programming. Lecture Notes in
Computer Science 4164 (Nov 2006) 135–167

5. Uustalu, T., Vene, V.: Comonadic functional attribute evaluation. Trends in
Functional Programming-Volume 6 (2007) 145–160

6. Orchard, D., Bolingbroke, M., Mycroft, A.: Ypnos: declarative, parallel structured
grid programming. In: DAMP ’10, NY, USA, ACM (2010) 15–24

7. Kieburtz, R.B.: Codata and Comonads in Haskell (1999)
8. Uustalu, T., Vene, V.: Comonadic Notions of Computation. Electron. Notes Theor.

Comput. Sci. 203(5) (2008) 263–284
9. Huet, G.: The zipper. Journal of Functional Programming 7(05) (1997) 549–554

10. McBride, C.: The derivative of a regular type is its type of one-hole contexts.
Unpublished manuscript (2001)

11. Ahman, D., Chapman, J., Uustalu, T.: When is a container a comonad? Founda-
tions of Software Science and Computational Structures (2012) 74–88

12. Orchard, D.: Programming contextual computations (2013) Forthcoming PhD
dissertation, http://www.cl.cam.ac.uk/techreports.

13. Lambek, J., Scott, P.: Introduction to higher-order categorical logic. Cambridge
University Press (1988)

14. Moggi, E.: Computational lambda-calculus and monads. In: Logic in Computer
Science, 1989. LICS’89, IEEE (1989) 14–23

15. Moggi, E.: Notions of computation and monads. Information and computation
93(1) (1991) 55–92

16. Hughes, J.: Programming with arrows. Advanced Functional Programming (2005)
73–129

17. Paterson, R.: A new notation for arrows. In: ACM SIGPLAN Notices. Volume 36.,
ACM (2001) 229–240

18. Abbott, M., Altenkirch, T., Ghani, N.: Containers: constructing strictly positive
types. Theoretical Computer Science 342(1) (2005) 3–27

A Proof of shape preservation

To prove shape preservation we first prove the following intermediate lemma:

cmap g ◦ extend f = extend (g ◦ f) (7)

cmap g ◦ extend f
≡ extend (g ◦ extract) ◦ extend f definition of cmap
≡ extend (g ◦ extract ◦ extend f) [C3]
≡ extend (g ◦ f) � [C2]

The proof of shape preservation (3) is then:

shape ◦ (extend f)
≡ (cmap (const ()) ◦ (extend f) definition of shape
≡ extend ((const ()) ◦ f) (7)
≡ extend ((const ()) ◦ extract) (const x) ◦ f ≡ (const x) ◦ g
≡ (cmap (const ())) ◦ (extend extract) (7)
≡ cmap (const ()) [C1]
≡ shape definition of shape

�

