School of Computing

A feature selection approach for automatic music genre classification

Carlos N. Silla Jr., Alessandro L. Koerich, and Celso A. A. Kaestner

International Journal of Semantic Computing, 3(2):182-196, September 2009 [doi].

Abstract

In this paper we present an analysis of the suitability of four different feature sets which are currently employed to represent music signals in the context of the automatic music genre classification. To such an aim, feature selection is carried out through genetic algorithms, and it is applied to multiple feature vectors generated from different segments of the music signal. The feature sets used in this paper, which encompass time-domain and frequency-domain characteristics of the music signal, comprise: short-time Fourier transform, Mel frequency cepstral coefficient, beat-related features, pitch-related features, inter-onset interval histogram coefficients, rhythm histograms and statistical spectrum descriptors. The classification is based on the use of multiple feature vectors and an ensemble approach, according to time and space decomposition strategies. Feature vectors are extracted from music segments from the beginning, middle and end parts of the music signal (time-decomposition). Despite music genre classification being a multi-class problem, we accomplish the task using a combination of binary classifiers, whose results are merged to produce the final music genre label (space decomposition). Experiments were carried out on two databases: the Latin Music Database, which contains 3,227 music pieces categorized into ten musical genres; the ISMIR'2004 genre contest database which contains 1,458 music pieces categorized into six popular western musical genres. The experimental results have shown that the feature sets have different importance according to the part of the music signal from where the feature vectors are extracted. Furthermore, the ensemble approach provides better results than the individual segments in most cases. For high-dimensional feature sets, the feature selection provides a compact but discriminative feature subset which has an interesting trade-off between classification accuracy and computational effort.

Download publication 545 kbytes (PDF)

Bibtex Record

@article{2957,
author = {Carlos N. Silla Jr. and Alessandro L. Koerich and Celso A. A. Kaestner},
title = {A Feature Selection Approach for Automatic Music Genre Classification},
month = {September},
year = {2009},
pages = {182-196},
keywords = {determinacy analysis, Craig interpolants},
note = {},
doi = {10.1142/S1793351X09000719},
url = {http://www.cs.kent.ac.uk/pubs/2009/2957},
    publication_type = {article},
    submission_id = {20852_1254948758},
    journal = {International Journal of Semantic Computing},
    volume = {3},
    number = {2},
    publisher = {World Scientific Publishing},
}

School of Computing, University of Kent, Canterbury, Kent, CT2 7NF

Enquiries: +44 (0)1227 824180 or contact us.

Last Updated: 21/03/2014