Perspectives on HCI Patterns
: Concepts and Tools (introducing PLML)

At CHI 2003, 15 participants gathered at a workshop to discuss perspectives on HCI patterns. We met to discuss what was important in this area, both in terms of conceptual understanding, and for pattern-related tools. We spent two days in hearty debate. Now, what would normally follow here is a narrative account of the interesting people who were there, and their interesting positions: a potted version of the discussions that you missed. However, this workshop produced something more robust than discussion alone, so we break the “workshop report” genre to introduce you to PLML (pronounced “pell mell”).

A significant outcome of the CHI2003 workshop is the Pattern Language Markup Language (PLML) specification. Our goal in deriving PLML was to bring order to the many (inconsistent) forms pattern authors have used. We were seeking a way in which patterns and pattern languages
 from various authors could refer to patterns in other collections, could identify common elements across collections, ways in which patterns from disparate authors could be combined into specific, thematic collections –perhaps even combined into larger meta-collections. The discussions of what might be included in such a specification were driven by dual concerns of what we considered to be important in the domain, and the variety of forms that had already been instantiated by various pattern authors (Fincher, 2000)

Here are the elements we believed to be important (and why):

<pattern id>

It is obvious that every pattern needs to have a unique id, within its own collection.

<name>

The naming of patterns—like cats—is a difficult matter (Eliot, 1962). All pattern authors are convinced of the importance of names, and pattern-users like to use them as shorthand. However, there is less agreement on the precise form or content of these. However, all agree that they should be short.

<alias>

“… The name really is ‘The Aged, Aged Man.’”

“Then I ought to have said ‘That’s what the song is called’?” Alice corrected herself.

“No you oughtn’t: that’s another thing. The song is called ‘Ways and Means’ but that’s only what it’s called, you know!” (Carroll, 1867)

<illustration>

Most pattern forms contain a picture, a really good example of an instantiation of the pattern “in real life”. For HCI patterns this usually means a screen-shot, although it could be a contextualising image (perhaps a photograph of people doing something); multi-media clips are not unknown.

<problem>

The most common pattern-forms are structured around problem-solution pairs, so the “problem” section describes the design situation that the pattern will address. It has been observed that characterising and formulating the “problem statement” is not the easiest part of developing a pattern (Borchers, 2001; Deen, 2000). And this observation is not unique to patterns. “By now we are all beginning to realize that one of the most intractable problems is that of defining problems” (Rittel & Webber, 1973)
LAST THINGS FIRST
Solutions to problems

 are easy to find:

the problem’s a great

 contribution.

What’s truly an art

 is to wring from your mind

a problem to fit

 a solution.(Hein, 2002)
<context>

This can also be thought of as “applicability”. This element was fought for particularly hard, and should be used to characterize situations in which this pattern can be most usefully (“naturally”) applied.

<forces>

Many pattern authors like to include a description of the “forces” in the environment that use of the pattern will resolve. The origin of this is a phrase in Christopher Alexander’s seminal text The Timeless Way of Building (Alexander, 1979) “every pattern we define must be formulated in the form of a rule which establishes a relationship between a context, a system of forces which arises in that context, and a configuration, which allows these forces to resolve themselves in that context.” That’s not quite how they’ve come to be used, and are more common in software design patterns than within HCI patterns. When described, though, they need a home. This is their element.

<solution>

This should address the problem, and should generalise from the examples that the pattern contains. Usually, the solution is expressed in the form of an instruction.

<synopsis>

This acts as a summary of the pattern, and may be particularly useful for situations where there is limited display-space.

<diagram>

A diagram is different from an illustration. The purpose of a diagram is to communicate to the user of the pattern—the designer—details that are more readily expressed (and apprehensible) in schematic form. Sometimes this is a free-hand sketch; sometimes it is a more formal representation, such as UML.

<evidence>

This is a bit of a tricky one. Many pattern-forms have a “body” section that contains more detail about, and discussion of, the design issue at hand. Some pattern authors do not have a separate section for the evidence that they drawn on to harvest their patterns. Some collections enforce the so-called “rule of three” whereby a pattern cannot be identified, cannot claim to be a pattern, if there are not three independent examples of its instantiation in the world. Anyway, there is enough divergence to allow two sub-elements of <evidence>:

<example> which includes known uses, and

<rationale> which includes discussion, and any principled reasons for the solution. That is principles of cognitive or behavioural psychology, etc., such as “recognition is easier than recall”.

<confidence>

Does the pattern-author believe that the pattern truly reflects an invariant solution? Or is it just a current “best-guess”? If used, we propose that this should be expressed as a rating, normally a star-rating (following the system used in A Pattern Language (Alexander et al., 1977): zero, one or two-stars).

<literature>

Often, a pattern will have references to other works, if those works are papers, references should be included here.

<implementation>

Sometimes a pattern will come with code, code fragments, or other details of technical implementation.

<related-patterns>

Patterns should never stand alone. This precept is more honoured in the breach than in the observance (Hamlet, Act 1 Scene 4). However, within a collection, this element shows the relations that express the structure of the whole. Between collections, it can serve to create thematic-, or meta- collections. To detail related patterns, you have to link to them. The form of the linkage is:

<pattern-link type="" patternID="" collectionID=”” label=””>

and we propose that there are several pre-defined link types (to reflect the common ways collections are currently structured):

	is-a
	:this pattern is the same as, or is an alternative solution to the same problem

	is-contained-by:
	:this pattern is “smaller” and is used (with others) to instantiate a larger one

	contains:
	:the reciprocal of is-contained-by

Finally, PLML contains a series of elements that indicate authorship and change management, they are: <author>, <credits>, <creation-date>, <last-modified>, and <revision-number>.

Here is the DTD that accompanies these descriptors:

PLML v1.1

<!ELEMENT pattern (name?, alias*, illustration?, problem?, context?, forces?, solution?, synopsis?, diagram?, evidence?, confidence?, literature?, implementation?, related-patterns?, pattern-link*, management?)>
<!ATTLIST pattern patternID CDATA #REQUIRED

>

<!ELEMENT name (#PCDATA)>

<!ELEMENT alias (#PCDATA)>

<!ELEMENT illustration ANY>

<!ELEMENT problem (#PCDATA)>

<!ELEMENT context ANY>

<!ELEMENT forces ANY>

<!ELEMENT solution ANY>

<!ELEMENT synopsis (#PCDATA)>

<!ELEMENT diagram ANY>

<!ELEMENT evidence (example*, rationale?)>

<!ELEMENT example ANY>

<!ELEMENT rationale ANY>

<!ELEMENT confidence (#PCDATA)>

<!ELEMENT literature ANY>

<!ELEMENT implementation ANY>

<!ELEMENT related-patterns ANY>

<!ELEMENT pattern-link EMPTY>

<!ATTLIST pattern-link

type CDATA #REQUIRED

patternID CDATA #REQUIRED

collection CDATA #REQUIRED

label CDATA #REQUIRED

>

<!ELEMENT management (author?, credits?, creation-date?, last-modified?, revision-number?)>

<!ELEMENT author (#PCDATA)>

<!ELEMENT credits (#PCDATA)>

<!ELEMENT creation-date (#PCDATA)>

<!ELEMENT last-modified (#PCDATA)>

<!ELEMENT revision-number (#PCDATA)>

Finally, the workshop was not over when the fat lady sang Not only have on-line discussions continued, but Martijn van Welie has already made his entire collection PLML compliant. See: http://www.welie.com/patterns/index.html, and Susan Babutzka has put PLML-compliant versions of some of Jan Borchers patterns from his book (Borchers, 2001) online. See: http://hci.ethz.ch/patterns/borchers/patternIndex.html
Workshop Leaders:

Sally Fincher, Janet Finlay, Sharon Greene, Pedro Molina, John Thomas

Workshop Participants:

Sherman Alpert, Jan Borchers, Ashraf Gaffar, Scott Henninger, Javier Hernández, James Lin, Daniel Sinnig, Martijn van Welie, Till Schümmer, Jenifer Tidwell,

Workshop Website: (including this report)
http://www.cs.kent.ac.uk/~saf/patterns/CHI2003WorkshopReport.doc
References

Alexander, C. (1979). The Timeless Way of Building. New York: Oxford University Press.

Alexander, C., Ishikawa, S., & Silverstein, M. (1977). A Pattern Language: Towns, Buildings, Constructions. New York: Oxford University Press.

Bayle, E., Bellamy, R., Casaday, G., Erickson, T., Fincher, S., Grinter, B., et al. (1998). Putting it all Together: Towards a Pattern Language for Interaction Design. SIGCHI Bulletin, 30(1), 17-24.

Borchers, J. (2001). A Pattern Approach to Interaction Design. Chichester: Wiley.

Carroll, L. (1867). Through the Looking Glass and What Alice Found There. London: Macmillan.

Deen, J. (2000). CHI 2000 Workshop Position Paper, from http://www.it.bton.ac.uk/staff/rng/CHI2K_PLworkshop/Participants.html
Eliot, T. S. (1962). Old Possum's Book of Practical Cats. London: Faber and Faber.

Fincher, S. (2000, 7th September 2000). The Pattern Gallery, from http://www.cs.ukc.ac.uk/people/staff/saf/patterns/gallery.html
Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1994). Design Patterns: Elements of Reusable Object-Oriented Software. Reading, Massachusets, US: Addison-Wesley.

Hein, P. (2002). Collected Grooks I. Copenhagen: Borgen Forlag.

Rittel, H. W. J., & Webber, M. M. (1973). Dilemmas in a General Theory of Planning. Policy Sciences, 4, 155-169.

� A “pattern” is a form of design representation formulated by Christopher Alexander in A Pattern Language � ADDIN EN.CITE <EndNote><Cite><Author>Alexander</Author><Year>1977</Year><RecNum>1</RecNum><MDL><REFERENCE_TYPE>1</REFERENCE_TYPE><AUTHORS><AUTHOR>Alexander, Christopher</AUTHOR><AUTHOR>Ishikawa, Sara</AUTHOR><AUTHOR>Silverstein, Murray</AUTHOR></AUTHORS><YEAR>1977</YEAR><TITLE>A Pattern Language: Towns, Buildings, Constructions</TITLE><PLACE_PUBLISHED>New York</PLACE_PUBLISHED><PUBLISHER>Oxford University Press</PUBLISHER></MDL></Cite></EndNote>�(Alexander, Ishikawa, & Silverstein, 1977)� for use in architecture. A Pattern Language espouses a design approach that focuses on the interactions between the physical form of buildings and the way in which that form inhibits or facilitates personal and social behaviours. Each “pattern” follows a prescribed form that is based on evidence for, and examples of, the use of the pattern, together with instructions for how to achieve its effect. Various domains have subsequently adopted and adapted the notion, notably “design patterns” in software � ADDIN EN.CITE <EndNote><Cite><Author>Gamma</Author><Year>1994</Year><RecNum>9</RecNum><MDL><REFERENCE_TYPE>1</REFERENCE_TYPE><AUTHORS><AUTHOR>Gamma, E</AUTHOR><AUTHOR>Helm, R</AUTHOR><AUTHOR>Johnson, R</AUTHOR><AUTHOR>Vlissides, J.</AUTHOR></AUTHORS><YEAR>1994</YEAR><TITLE>Design Patterns: Elements of Reusable Object-Oriented Software</TITLE><PLACE_PUBLISHED>Reading, Massachusets, US</PLACE_PUBLISHED><PUBLISHER>Addison-Wesley</PUBLISHER></MDL></Cite></EndNote>�(Gamma, Helm, Johnson, & Vlissides, 1994)�. Since 1997 � ADDIN EN.CITE <EndNote><Cite><Author>Bayle</Author><Year>1998</Year><RecNum>10</RecNum><MDL><REFERENCE_TYPE>0</REFERENCE_TYPE><AUTHORS><AUTHOR>Bayle, E</AUTHOR><AUTHOR>Bellamy, R</AUTHOR><AUTHOR>Casaday, G</AUTHOR><AUTHOR>Erickson, T</AUTHOR><AUTHOR>Fincher, S</AUTHOR><AUTHOR>Grinter, B</AUTHOR><AUTHOR>Gross, B</AUTHOR><AUTHOR>Lehder, D</AUTHOR><AUTHOR>Marmolin, H</AUTHOR><AUTHOR>Moore, B</AUTHOR><AUTHOR>Potts, C</AUTHOR><AUTHOR>Skousen, G</AUTHOR><AUTHOR>Thomas, J</AUTHOR></AUTHORS><YEAR>1998</YEAR><TITLE>Putting it all Together: Towards a Pattern Language for Interaction Design</TITLE><SECONDARY_TITLE>SIGCHI Bulletin</SECONDARY_TITLE><VOLUME>30</VOLUME><NUMBER>1</NUMBER><PAGES>17-24</PAGES></MDL></Cite></EndNote>�(Bayle et al., 1998)� the HCI community has been working to develop UI and HCI patterns and pattern languages.

� HCI pattern languages for our part, but there is no essential reason why PLML should not be appropriate to pattern endeavours in other domains

Reference details for this document: Perspectives on HCI patterns: concepts and tools (introducing PLML). Sally Fincher. Interfaces, (56):26-28, September 2003.

It is available on the web from: http://www.bcs-hci.org.uk/interfaces.html

